Abstract: An agricultural machine for conducting an agricultural working process includes a combustion engine (2), electrical consumers (3-8), a chargeable electrical battery (9) for electrically supplying the consumers (3-8) and a monitor module (10) for monitoring the charging level of the battery (9). It is proposed that some of the electrical consumers (3-8) of the agricultural machine (1) are peripheral consumers (3-8) for providing functions in a parking state of the agricultural machine (1), in which the combustion engine (2) is shut off, that a power management module (11) is provided, which in the parking state of the agricultural machine (1) monitors the charging level of the battery (9) via the monitor module (11) and deactivates at least one peripheral consumer (3-8), when the charging level falls below a threshold level.
Type:
Grant
Filed:
December 21, 2017
Date of Patent:
November 10, 2020
Assignee:
CLAAS E-Systems GmbH
Inventors:
Benjamin Heyne, Volker Brill, Christian Laing, Nermine Khairallah
Abstract: Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable devices in some examples include a multi-axis antenna having a plurality of coil windings arranged orthogonal to one another. The multi-axis antenna configured to generate at least a minimum level of induced current for recharging a power source of the implanted medical device regardless of the orientation of a direction of a magnetic field imposed on the multi-axis antenna relative to an orientation of the implanted medical device and the multi-axis antenna for a given energy level of the imposed magnetic field.
Type:
Grant
Filed:
June 28, 2018
Date of Patent:
November 3, 2020
Assignee:
Medtronic, Inc.
Inventors:
Rajesh V. Iyer, Gordon O. Munns, Christian S. Nielsen, Craig L. Schmidt, Paul B. Young
Abstract: A battery management and balance circuit comprises multiple battery group balance circuits, multiple battery module balance circuits and a battery management unit. The battery group balance circuits connect to battery groups for executing first charge or discharge command. The battery management unit connect to the battery group balance circuits and the battery module balance circuits for generating the first and second charge or discharge commands to the battery module balance circuits. A battery system and a battery management and balance circuit method is also introduced.
Type:
Grant
Filed:
December 11, 2017
Date of Patent:
October 20, 2020
Assignee:
NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
Inventors:
Chi-Sheng Wu, Chih-Hsien Chung, Hsuang-Chang Chiang, Tsang-Li Tai
Abstract: A smoothing unit smoothes a detected voltage of each power storage block based on previous data during a certain period. A calculator calculates a difference between a smoothing voltage of one power storage block in the n power storage blocks and a representative value of the smoothing voltages of the other power storage blocks or all the power storage blocks. A determination unit determines a power storage block whose difference against the representative value enlarges more than or equal to a set value during a predetermined period as a power storage block containing an abnormal power storage cell.
Abstract: A system and method for charging an electric vehicle includes identifying vehicle information corresponding to the electric vehicle based on an electronic image of the electric vehicle, retrieving from an electronically stored database a location of a charging port on the electric vehicle based on the vehicle information, and robotically moving a charging connector according to the retrieved location to engage the charging port of the electric vehicle to charge a battery.
Abstract: A fast charging battery system and method for charging battery systems can be applied to most battery types in use for electric vehicles (EVs), electronic devices, and wireless electrical machines. The system could employ industry proven battery charger systems and off-the-shelf electrical components (e.g., contactors, relay switches, semiconductor parts, DC-DC converters, and the like) to keep cost and complexity low. The system provides for two or more charging ports in the electronic device, such as an EV, that may be able to receive and recognize a charging type, such as charging voltage, current and the like, and provide directed charging to multiple battery sub-packs that make up the entire battery. By charging sub-packs in parallel, the charge time can be substantially reduced.
Abstract: A wireless power transmitter and a method for operating the wireless power transmitter are provided, which transmit charging power to a wireless power receiver. A control signal is provided that includes time information and load change information, and a load change of the wireless power receiver is detected during a period of time corresponding to the first time information. If the detected load change of the wireless power receiver corresponds to the load change information included in the control signal, a determination is made that the wireless power receiver is admitted for charging.
Abstract: In a general aspect, a charging apparatus can include a power converter circuit configured to supply, from an input voltage, charging power for charging a battery of an electronic device; and a control circuit configured to determine a charging current limit and a charging voltage of the power converter circuit for charging the battery. Determining the charging current limit and the charging voltage can include: setting the current limit of the power converter circuit to an initial charging current limit and setting the charging voltage to an initial charging voltage; determining whether the power converter circuit is operating in a current limit mode or a voltage limit mode; and iteratively modifying the current limit of the power converter circuit until the power converter circuit dithers between the current limit mode and the voltage limit mode.
Abstract: A method tests a balancing circuit for a battery having a plurality of battery cells. The method detects first voltage states of the battery cells by way of a control unit; activates the balancing circuit with the aim of achieving a voltage equalization of at least two of the battery cells; detects second voltage states of the battery cells by way of the control unit; and determines a functional capability of the balancing circuit based on the first voltage states and the second voltage states of the battery cells by way of the control unit.
Type:
Grant
Filed:
December 27, 2018
Date of Patent:
September 8, 2020
Assignee:
Bayerische Motoren Werke Aktiengesellschaft
Abstract: A method for energy management robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.
Type:
Grant
Filed:
March 30, 2018
Date of Patent:
September 1, 2020
Assignee:
iRobot Corporation
Inventors:
David A. Cohen, Daniel N. Ozick, Clara Vu, James Lynch, Philip R. Mass
Abstract: A charging station for charging an electric energy storage means of an electric vehicle using alternating charging current, having a fault-current protective device and having a charging controller. The fault-current protective device is divided into its functional units, a differential-current monitoring unit forming an integral structural unit in the form of a charging-current controller and monitoring device in conjunction with the charging controller according to the invention. Alternatively, the fault-current protective device forms an integral structural unit in the form of a charging-current controller and protective device in conjunction with charging controller.
Abstract: A battery controller of an embodiment includes an auxiliary battery, a connection control unit, a calculating unit, and a balancing control unit. The auxiliary battery is a lithium ion secondary battery that is connectable to or disconnectable from an auxiliary power line of a vehicle. The connection control unit disconnects the battery from the auxiliary power line under a certain condition of the vehicle. The calculating unit calculates the state of charge of the battery when the battery is disconnected by the connection control unit. The balancing control unit executes balancing control to equalize the amount of charge between cells of the battery when the battery is disconnected by the connection control unit.
Abstract: A slave control apparatus including a receiver and a controller. The receiver is configured to receive a sensed physical quantity of a battery and a sensed output physical quantity of a converter corresponding to the battery. The controller is configured to determine state information of the battery based on the sensed physical quantity and the sensed output physical quantity, transmit the state information to a master control apparatus, and control the converter based on output information from the master control apparatus that corresponds to the state information.
Abstract: Provided are a semiconductor device, a battery system, and a battery control method that are capable of reducing difference in remaining capacity without regard to the load status of a battery pack. The semiconductor device includes a high-voltage resistant circuit and a low-voltage circuit. The high-voltage resistant circuit includes a multiplexer that selects one of multiple series-coupled battery cells in a battery pack and couples the selected battery cell to the battery pack. The low-voltage circuit includes a measurement circuit that individually measures voltages of the battery cells. The multiplexer couples one of the battery cells to a power supply for the low-voltage circuit.
Abstract: A mobile energy storage apparatus comprised of: a. at least one variable energy control device which converts DC to DC, AC to DC and DC to AC and b. at least one energy storage device (such as a battery) and c. a means to adjust said at least one variable energy control device to various electrical output powers and d. a means to connect said mobile energy storage apparatus to an EV (electric vehicle) or other device electrically and mechanically to enable transferring energy even when in motion and e. optionally a means for attaching various covers to said mobile energy storage apparatus to suit various applications. The mobile energy storage apparatus allows the transfer of energy to or from: an EV, a building or any other electrical facility or device and can be configured with built-in or attached to various power sources.
Type:
Grant
Filed:
January 31, 2018
Date of Patent:
August 11, 2020
Inventors:
Stephen G. Johnsen, Ronald L. Easley, Kenneth G. Johnsen, Chad M. Hohn
Abstract: An electronic device and an operation method thereof according to various example embodiments wirelessly receive detection power for detecting the electronic device, and put a limitation on storing the power.
Type:
Grant
Filed:
January 6, 2017
Date of Patent:
August 11, 2020
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Yusu Kim, Seho Park, Jung-Oh Sung, Ku-Chul Jung, Yong Sang Yun
Abstract: A charging device is provided. The charging device includes an output terminal unit connected to an input terminal unit of a battery pack. The output terminal unit includes a terminal body including an output terminal connected to the input terminal unit and a terminal cover which covers the output terminal before the input terminal unit of the battery pack is connected to the output terminal unit and through which the output terminal passes while the input terminal unit of the battery pack is connected to the output terminal unit.
Type:
Grant
Filed:
May 3, 2017
Date of Patent:
August 11, 2020
Assignee:
LG Electronics Inc.
Inventors:
Geunyong Jung, Seongho Park, Sejong Park, Jonghyun Seo, Jinwoo Lee
Abstract: An uninterruptible power supply comprising a first switch unit, a charging circuit, a first voltage conversion circuit, a second voltage conversion circuit, a second switch unit and a control circuit is provided. When the uninterruptible power supply performs a battery activation operation, the control circuit controls the first switch unit to provide the AC power received by the uninterruptible power supply to a terminal of a bypass path, controls the first switch unit to provide the output of a battery to the first voltage conversion circuit, controls the second switch unit to electrically couple the output terminal of the uninterruptible power supply to the other terminal of the bypass path, controls the charging circuit to stop charging the battery, and controls the first voltage conversion circuit to perform a DC-DC conversion operation. In addition, a corresponding battery activation operation method is also provided.
Abstract: A battery pack for providing different power sources may include: a low voltage battery configured to supply a first voltage; a high voltage battery configured to supply a second voltage, the second voltage being higher than the first voltage; a charging circuit configured to charge the low voltage battery using the high voltage battery; and/or a controller configured to control the charging circuit to charge the low voltage battery when a charge state of the low voltage battery is less than a desired charge state.
Abstract: A method for supplying power from at least one power supply unit to transportation vehicles requiring a power supply, in which a position of a transportation vehicle-side power supply interface of a transportation vehicle requiring power is determined for each transportation vehicle and the transportation vehicle-side power supply interface is automatically coupled to a power supply interface of the power supply unit by the power supply interface of the power supply unit being moved by a robot to the transportation vehicle-side power supply interface and coupled thereto. A robot is responsible for coupling transportation vehicles to a suitable power supply interface of the power supply unit.
Type:
Grant
Filed:
December 19, 2016
Date of Patent:
July 14, 2020
Assignees:
VOLKSWAGEN AG, KUKA DEUTSCHLAND
Inventors:
Daniel Schütz, Michael Grote, Jürgen Stieg, Lutz Junge, Sven Horstmann, Thorsten Bagdonat, Sebastian Grysczyk, Andreas Weiser, Norbert Settele