Patents Examined by Aaron W Pierpont
  • Patent number: 10370596
    Abstract: A method for producing an alternative gasoline fuel which contains 60% v/v or more of a combination of (a) a biologically-derived alcohol and (b) a mixture of C4 to C12 hydrocarbon fuel components, all of which hydrocarbon fuel components have been derived, whether directly or indirectly, from the catalytic conversion of a non-petroleum or biologically-derived oxygenate component, wherein the concentration of the alcohol (a) in the formulation is from 0.1 to 30% v/v.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: August 6, 2019
    Assignee: Virent, Inc.
    Inventors: Paul Blommel, Richard Price
  • Patent number: 10370601
    Abstract: Methods of separating and purifying products from the catalytic fast pyrolysis of biomass are described. In a preferred method, a portion of the products from a pyrolysis reactor are recovered and purified using a hydrotreating step that reduces the content of sulfur, nitrogen, and oxygen components, and hydrogenates olefins to produce aromatic products that meet commercial quality specifications.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: August 6, 2019
    Assignee: Anellotech, Inc.
    Inventors: Charles M. Sorensen, Jr., Ruozhi Song, Terry J. Mazanec
  • Patent number: 10369556
    Abstract: An integrated process for gasoline production is described. The process includes introducing a feed comprising n-C5 hydrocarbons into a disproportionation reaction zone in the presence of a disproportionation catalyst to form a disproportionation mixture comprising iso-C4 and C6+ disproportionation products and unreacted n-C5 hydrocarbons. An iso-C4 hydrocarbon stream and an olefin feed are introduced into an alkylation reaction zone in the presence of an alkylation catalyst to produce an alkylation mixture comprising alkylate and unreacted iso-C4 paraffins. The disproportionation mixture and the alkylation mixture are combined, and the combined mixture is separated into at least a stream comprising the alkylate product, an iso-C4 stream, and an unreacted n-C5 hydrocarbon stream. The iso-C4 stream is recycled to the alkylation reaction zone, and the unreacted n-C5 hydrocarbon stream is recycled to the disproportionation reaction zone. The stream comprising the alkylate product is recovered.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: August 6, 2019
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Stuart Smith, Douglas A. Nafis, Alakananda Bhattacharyya, Bryan K. Glover, Susie C. Martins
  • Patent number: 10364396
    Abstract: The present disclosure relates to thermal conversion of ketoacids, including methods for increasing the molecular weight of ketoacids, the method including the steps of providing in a reactor a feedstock comprising at least one ketoacid. The feedstock is then subjected to one or more C-C-coupling reaction(s) by heating the feedstock to temperature of 200-500° C. in the absence of a catalyst.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: July 30, 2019
    Assignee: NESTE OYJ
    Inventors: Jukka Myllyoja, Rami Piilola
  • Patent number: 10344226
    Abstract: A process for preparing olefinic products by thermal steam cracking of a first furnace feed composed of hydrocarbons in at least one first cracking furnace and of a second furnace feed composed of hydrocarbons in at least one second cracking furnace. The first furnace feed is at least partly converted into a first product stream in the first cracking furnace and the second furnace feed is at least partly converted into a second product stream in the second cracking furnace. A first pyrolysis oil is isolated from the first product stream and is at least partly treated chemically. The first pyrolysis oil is at least partly recirculated as furnace feed from downstream of the chemical treatment to the first cracking furnace. The first cracking furnace and the second cracking furnace are operated under different cracking conditions.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: July 9, 2019
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Gunther Schmidt, Boris Banovsky, Stefanie Walter
  • Patent number: 10343153
    Abstract: A method is provided of forming an olefin from a first olefin and a second olefin in a metathesis reaction, comprising reacting the first olefin with the second olefin in the presence of a compound that catalyzes the metathesis reaction such that the molar ratio of the compound to the first or the second olefin is from 1:500 or less, and the conversion of the first or the second olefin to the olefin is at least 30%.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: July 9, 2019
    Assignee: XiMo AG
    Inventors: Levente Ondi, Jeno Varga, Agota Bucsai, Florian Toth, Krisztian Lorincz, Csaba Hegedus, Emmanuel Robe, Georg Emil Frater
  • Patent number: 10344106
    Abstract: Disclosed herein are dual catalyst compositions containing an unbridged metallocene compound, a bridged metallocene compound, a chemically-treated solid oxide, and an optional co-catalyst. These catalyst compositions can be used for the oligomerization of propylene to produce an oligomer product. For example, a heavy propylene oligomer can be recovered from the oligomer product, and the heavy propylene oligomer can be characterized by a high flash point and viscosity index, and a low pour point.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: July 9, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Graham R. Lief, Uriah J. Kilgore, Eric J. Haschke
  • Patent number: 10329211
    Abstract: Methods for the oligomerization of ethylene, and more specifically, methods for the preparation of mainly ethylene oligomers of C10 or higher are described. A method can include performing a first oligomerization of an ethylene gas using a Ni-containing mesoporous catalyst, followed by a second oligomerization using an ion exchange resin, etc. to produce ethylene oligomers of C10 or higher. The method for the preparation of ethylene oligomers can produce C8-16 ethylene oligomers in high yield without inducing deactivation of the catalyst, compared to the conventional technology of ethylene oligomerization by a one-step process.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: June 25, 2019
    Assignee: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Dong Won Hwang, Ho Jeong Chae, MaEum Lee, Ji Sun Yoon
  • Patent number: 10329225
    Abstract: Processes and multiple-stage catalyst systems are disclosed for producing propylene from butene by at least partially metathesizing butene in a metathesizing reaction zone having a metathesis catalyst to form a metathesis reaction product and at least partially cracking the metathesis reaction product in a cracking reaction zone having a cracking catalyst to form a cracking reaction product that includes propylene. The metathesis catalyst may be a mesoporous silica-alumina catalyst support impregnated with metal oxide having a mesoporous silica-alumina catalyst support comprising from 5 weight percent to 50 weight percent alumina. The cracking catalyst may be a MFI structured silica-containing catalyst. The cracking reaction zone may be downstream of the metathesis reaction zone.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: June 25, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Faisal H. Alshafei, Noor A. Sulais, Sohel K. Shaikh, Raed H. Abudawoud
  • Patent number: 10322981
    Abstract: A substantially zero carbon emission process for making amorphous poly alpha olefins including, converting alkanes to olefin monomers ethylene, propylene, and 1-butene or combinations thereof using renewable electric power in an oxidative-coupling of methane plant including the steps of passing alkanes through an ethylene plant while adding oxygen, passing the first polymerization grade ethylene through a 2-butene plant, passing a first of the two 2-butene streams and one of the polymerization grade ethylene through a propylene plant, and passing a second of the two 2-butene streams through a 1-butene plant. The next step in the process for making amorphous poly alpha olefins includes polymerizing at least one of the polymerization grade alkenes which includes applying a temperature of 130 degrees Fahrenheit to 175 degrees Fahrenheit to at least one of the polymerization grade alkenes and scrubbing at least one boiler stack gases.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: June 18, 2019
    Inventors: Nick Fowler, Deborah Lawrence, Steve McHaney
  • Patent number: 10307742
    Abstract: A beta zeolite catalyst for the preparation of a BTEX (benzene, toluene, ethylbenzene, xylene) mixture from polyaromatic hydrocarbons and a preparation method of the same are disclosed. The beta zeolite catalyst demonstrates high conversion of polyaromatic hydrocarbons and high BTEX production yield by containing optimum contents of the group VIB metals and cocatalysts, so that it can be effectively used as a beta zeolite catalyst for the production of BTEX.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: June 4, 2019
    Assignee: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Jeong-Rang Kim, Soon Yong Jeong, Chul Ung Kim, Tae Wan Kim, Youjin Lee, Eun Sang Kim, Joo Wan Kim
  • Patent number: 10301233
    Abstract: We provide a process, comprising: a. dehydrogenating natural gas liquid to produce a mixture comprising olefins and unconverted paraffins; b. without further purification or modification other than mixing with an isoparaffin, sending the mixture to a single alkylation reactor; c. alkylating the olefins with the isoparaffin, using an ionic liquid catalyst, to produce one or more alkylate products; and d. distilling the one or more alkylate products and collecting a bottoms distillation fraction that is a middle distillate blending component having a sulfur level of 50 wppm or less and a Bromine number less than 1.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: May 28, 2019
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Cho Timken, Kenneth John Peinado, Bong-Kyu Chang
  • Patent number: 10301553
    Abstract: Uses of aryl sulfonium salts for lowering sulfide concentrations and for preventing growth of microbes in a water injection system, a hydrocarbon extraction system, or a hydrocarbon production system are disclosed. Treating oilfield injection and produced fluids containing high levels of microbes with aryl sulfonium salts can significantly decrease the amount of hydrogen sulfide produced, which can be used to measure sulfidogenesis. The treatment can also decrease the number of active microbes in the injection and produced fluids. Thus, these aryl sulfonium salts can be effectively used as inhibitors of hydrogen sulfide generation and as biocides in oilfield fluids.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: May 28, 2019
    Assignee: Ecolab USA Inc.
    Inventors: Brett Geissler, Ashish Dhawan
  • Patent number: 10294439
    Abstract: Provided herein are olefinic feedstocks derived from conjugated hydrocarbon terpenes (e.g., C10-C30 terpenes), methods for making the same, and methods for their use.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: May 21, 2019
    Assignee: AMYRIS, INC.
    Inventors: Nicholas Ohler, Karl Fisher, Jin Ki Hong
  • Patent number: 10280370
    Abstract: A one-pot liquefaction process for biomass is presented. The one-pot liquefaction process for biomass comprises the following steps: preparing a slurry containing a catalyst, a vulcanizing agent and a biomass, and introducing hydrogen into the slurry to carry out a reaction, thereby obtaining a bio-oil wherein the reaction is controlled to be carried out under a pressure of 13-25 MPa and a temperature of 300-500° C.; and the catalyst comprises amorphous alumina or biomass charcoal loading an active component, and the active component comprises one or more selected from oxides of metals of group VIB, group VIIB or group VIII in the periodic table of elements. The process provided by the present invention has high reaction efficiency, no coke formation and high liquid yield.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 7, 2019
    Assignee: Beijing Huashi United Energy Technology and Development Co., Ltd
    Inventors: Ke Lin, Lin Li, Lixin Guo, Yongjun Cui, Lilong Jiang
  • Patent number: 10272359
    Abstract: A process is presented for the removal or aromatics from a hydrocarbon stream. The hydrocarbon stream is generated by a dehydrogenation process that generates aromatics. The process includes a two contact cooler system with the first and second contact coolers using different coolants. The second coolant is a non-aromatic hydrocarbon coolant that will absorb aromatics.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 30, 2019
    Assignee: UOP LLC
    Inventors: Gregory J. Nedohin, Mike Banach, David N. Myers
  • Patent number: 10266774
    Abstract: There is provided a process and systems for producing fuels via pyrolysis of carbonaceous feedstock under pressure and temperature in an efficient manner using a circulating fluidized bed with catalyst(s). The pressure and temperature are selected to provoke supercritical conditions, and pyrolysis, hydropyrolysis, hydrotreating, and optionally reforming treatment of the carbonaceous feedstock is carried out simultaneously in one reactor on a recirculating fluidized bed containing catalysts.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: April 23, 2019
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Eloy Flores, III, Monica R. Medrano, Hsiang Y. Lai, Michael P. Hartmann
  • Patent number: 10240093
    Abstract: A method having the following steps: subjecting plastic waste material to a thermal pre-treatment in order to produce a liquid plastic mass, wherein the thermal pre-treatment of the plastic material is carried out in an inert gas atmosphere at a temperature that varies between 110° C. and 310° C.; simultaneously feeding the liquid plastic mass to a reaction apparatus; bringing the plastic mass into contact with a bed of particles of inorganic porous material contained inside the reaction apparatus at a temperature of between 300° and 600° C.; inducing thermocatalytic decomposition reactions at a temperature of between 300 and 600° C. in order to generate a mixture of hydrocarbons in a vapor phase; and separating the hydrocarbons from the vapor phase current generated inside the reaction means in order to produce a liquid mixture of hydrocarbons.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: March 26, 2019
    Assignee: NEWPEK S.A. DE C.V.
    Inventors: Luis Noreña Franco, Julia Aguilar Pliego, Mirella Gutiérrez Arzaluz, Maricela Sánchez Sánchez, Luis Alberto Villareal Cárdenas, Andrés Rosas Camacho, Arturo Cisneros Farías, Enrique Saldivar Guerra, Ivan Alejandro De La Peña Mireles, José Ramiro Infante Martínez
  • Patent number: 10239044
    Abstract: A separation medium consisting of a cyclodextrin metal-organic framework (CD-MOF) for separating aromatic compounds and methods of preparing the same are presented. Bottom-up preparations include the following steps: (a) preparing a first mixture comprising a cyclodextrin, an alkali metal salt, water and an alcohol; (b) performing one of the following two steps: (i) stirring the first mixture; or (ii) adding an amount of a surfactant to the first mixture to form a second mixture; and (c) crystallizing the CD-MOF from the first mixture or the second mixture. Top-down preparations include the following steps: (a) preparing a first mixture comprising the cyclodextrin, an alkali metal salt, water and an alcohol; (b) crystallizing the CD-MOF from the first mixture; and (c) optionally performing particle size reduction of the crystallized CD-MOF. The CD-MOFs are amenable for use in methods for separating alkylaromatic and haloaromatic compounds from a mixture of hydrocarbons.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: March 26, 2019
    Assignees: Northwestern University, King Abdulaziz City for Science and Technology (KACST)
    Inventors: James M. Holcroft, Karel J. Hartlieb, James Fraser Stoddart
  • Patent number: 10227268
    Abstract: Methods for oxidative coupling of methane using metal oxide catalysts and a sulfur oxidant.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: March 12, 2019
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Matthias Peter