Patents Examined by Abbas H Alagheband
  • Patent number: 10718847
    Abstract: A beacon system includes a controller, a laser module operably connected to the controller, and at least one sensor operably connected to the controller. In such a system, the controller is configured to receive a signal from the at least one sensor, and to determine whether a response to the signal is required.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: July 21, 2020
    Assignee: LMD Power of Light Corporation
    Inventors: Christopher A. Gagliano, Jeffrey D. Tuller, Jeffrey W. Mock, Brian L. Olmsted
  • Patent number: 10720996
    Abstract: A frequency characteristic adjustment circuit is disclosed. The frequency characteristic adjustment circuit is disposed between an optical circuit element and a drive circuit for driving the optical circuit element. A capacitor is connected to an output of the drive circuit. A current supply circuit is controlled by a voltage generated by the drive circuit. The current supply circuit supplies a different current value depending on a voltage received from the drive circuit to the optical circuit element.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: July 21, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Toshihiko Mori, Yuuki Ogata
  • Patent number: 10707970
    Abstract: A wavelength de-multiplexing system that receives a wavelength multiplexed signal and generates electrical signals corresponding to the optical signals is disclosed. The optical receiver module includes a lens, a lens unit, and an optical de-multiplexer (O-DeMux). The lens converts the wavelength multiplexed signal into a quasi-collimated beam. The lens unit narrows a diameter of the quasi-collimated beam. The O-DeMux de-multiplexes the narrowed quasi-collimated beam coming from the lens unit by wavelength selective filters (WSFs) each having optical distances from the lens unit different from each other.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: July 7, 2020
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Device Innovations, Inc.
    Inventors: Kazuaki Mii, Hiroshi Hara, Fumihiro Nakajima
  • Patent number: 10708676
    Abstract: An optical transmission line switching apparatus relays main signal light input via a main transmission line including at least two transmission lines. When no failure occurs in the main transmission line, a control unit controls an optical switch and an optical switch so that the optical switch and the optical switch are connected to different transmission lines. When a failure occurs in one of the at least two transmission lines, the control unit controls the optical switch and the optical switch so that the optical switch and the optical switch are connected to a transmission line that does not have the failure. When recovery from the failure is completed, the control unit controls the optical switch and the optical switch so that the optical switch and the optical switch are connected to different transmission lines.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: July 7, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shun Chikamori, Katsunori Imanishi, Toshiyuki Tokura, Kengo Takata
  • Patent number: 10700788
    Abstract: A method and an apparatus for compensating for wavelength drift are disclosed. The method includes: generating, by a burst control circuit, a burst bias current; sending, by the burst control circuit, the burst bias current to a light emitting part and a trigger; converting, by the trigger, the received burst bias current into burst DA data; sending, by the trigger, the burst DA data to a synthesizer circuit; receiving, by the synthesizer circuit, the burst DA data sent by the trigger and the calibrated DA data sent by the MCU respectively; synthesizing, by the synthesizer circuit, the burst DA data and the calibrated DA data to obtain a synthesized signal; and sending, by the synthesizer circuit, the synthesized signal to a temperature control part.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: June 30, 2020
    Assignee: WUHAN TELECOMMUNICATION DEVICES CO., LTD.
    Inventors: Zhenfeng Xue, Yongan Fu, Liping Sun, Jun Zhang, Yaping Lv, Ting Gao, Chao Luo, Chaoqun Wu
  • Patent number: 10693562
    Abstract: An encoding device includes an encoding unit, DA converters, light sources, intensity modulators, and wavelength multiplexers. The encoding unit adds (NM/2) to an encoded signal having a negative minimum value in a range of the encoded signal among encoded signals of N channels of (NM+1) values obtained by calculating an inner product of a Hadamard matrix of N rows and N columns and a matrix having elements of N intensity signals of (M+1) values. The DA converters of the channels convert the encoded signals of the channels from digital signals into electrical analog signals. The light sources output light of wavelengths for use in the channels. The light intensity modulators of the channels intensity-modulate the light output from the light sources with the encoded signals converted into the electrical analog signals by the DA converters. The wavelength multiplexer outputs a wavelength-multiplexed signal obtained by wavelength-multiplexing the light intensity-modulated by the light intensity modulators.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: June 23, 2020
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shuto Yamamoto, Akira Masuda, Yoshiaki Sone, Mitsunori Fukutoku
  • Patent number: 10680709
    Abstract: A debugging method and device for an operating point voltage of a parallel MZI electro-optical modulator. The parallel MZI electro-optical modulator comprises a Parent MZI (2) formed by a parallel connection of a Child MZI (3) in an I path and a Child MZI (4) in a Q path.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: June 9, 2020
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Zhao Huang, Bo Zhang, Kun Qian, Yi Hu, Weidong Ma
  • Patent number: 10651945
    Abstract: An encoding device includes an encoding unit, DA converters, light sources, intensity modulators, and wavelength multiplexers. The encoding unit adds (NM/2) to an encoded signal having a negative minimum value in a range of the encoded signal among encoded signals of N channels of (NM+1) values obtained by calculating an inner product of a Hadamard matrix of N rows and N columns and a matrix having elements of N intensity signals of (M+1) values. The DA converters of the channels convert the encoded signals of the channels from digital signals into electrical analog signals. The light sources output light of wavelengths for use in the channels. The light intensity modulators of the channels intensity-modulate the light output from the light sources with the encoded signals converted into the electrical analog signals by the DA converters. The wavelength multiplexer outputs a wavelength-multiplexed signal obtained by wavelength-multiplexing the light intensity-modulated by the light intensity modulators.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: May 12, 2020
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shuto Yamamoto, Akira Masuda, Yoshiaki Sone, Mitsunori Fukutoku
  • Patent number: 10643461
    Abstract: Methods and systems relating to communication of authentication information in an access control system are disclosed. The authentication information is transmitted to an electronic locking device configured to restrict access to an entry point of the access control system. In various embodiments, a smart device comprises a light-emitting diode (LED) and a wireless networking radio for exchanging access control information with a remote server. The smart device may receive information from the remote server that configures the LED to present authentication information as an optical signal. According to various embodiments, the smart device may comprise a user interface display. Presentation of the authentication information may include rendering a webpage comprising a dynamic visual feature that changes visual content appearing on the user interface display so as to convey the authentication information as the optical signal emitted by the user interface display.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 5, 2020
    Assignee: Videx, Inc.
    Inventor: Paul R. Davis
  • Patent number: 10644822
    Abstract: A network system comprises a plurality of nodes and a plurality of optical amplifiers. A first node comprises a first transmitter configured to send a wavelength-division-multiplexed optical signal and a first receiver configured to receive a wavelength-division-multiplexed optical signal, and the second node comprises a second transmitter configured to send a wavelength-division-multiplexed optical signal and a second receiver configured to receive a wavelength-division-multiplexed optical signal. The first and second transmitters are optically connected to an input of the first optical amplifier and an input of the second optical amplifier, respectively, and the first and second receivers are optically connected to an output of the first optical amplifier and an output of the second optical amplifier, respectively. The receivers each comprise a photoreceiver and a reception circuit. The photoreceiver is electrically connected, by flip chip connection, to a reception circuit.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: May 5, 2020
    Assignee: PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventor: Yutaka Urino
  • Patent number: 10634844
    Abstract: A multi-channel transceiver, consistent with the present disclosure, includes a multiplexer/demultiplexer (MUX/DEMUX) device configured to be shared by, and support operations of, a multi-channel transmitter optical subassembly (TOSA) and multi-channel receiver optical subassembly (ROSA) within a single transceiver housing. The shared MUX/DEMUX device may be referred to herein as simply a shared AWG for ease of description and not for purposes of limitation. The shared AWG receives optical signals from a plurality of TOSA modules at different channel wavelengths via a plurality of mux input ports, and then combines the optical signals into a multiplexed optical signal, with the multiplexed optical signal being output via a mux output port. In addition, the shared AWG receives an optical signal having different channel wavelengths at a demux input port and separates channel wavelengths to be output via a plurality of demux output ports.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: April 28, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Qin Li, Chong Wang
  • Patent number: 10637602
    Abstract: A system and method for improving for amplifying a multi-frequency radio signal by using high efficiency amplifiers to amplify one radio frequency carrier at a time. The system further improves performance by providing parallel communication pathways throughout the entire transport and distribution chain. By creating parallel processing paths, both optically and electrically, the interaction of multiple signals are limited thereby avoiding unwanted intermodulation and noise.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: April 28, 2020
    Inventor: Henry Wojtunik
  • Patent number: 10630419
    Abstract: Embodiments of the present invention provide a receiver and a data receiving method. The receiver includes: two first input ends, configured to receive a digital signal of an X-polarization state and a digital signal of a Y-polarization state; a despreading module, configured to despread the digital signal of the X-polarization state and the digital signal of the Y-polarization state based on N delay values and spreading codes of N transmitters, to obtain N first baseband signals and N second baseband signals; and a multiple-input multiple-output equalization module, configured to perform equalization filtering processing on the N first baseband signals and the N second baseband signals, to obtain recovered data of the first polarization states and recovered data of the second polarization states of the N transmitters. In the embodiments of the present invention, the coherent CDMA multipoint-to-point data transmission in an optical communications system is implemented.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: April 21, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xie Wang, Yuanda Huang, Liangchuan Li
  • Patent number: 10623095
    Abstract: A signal detection device including: a comparison unit that obtains data including central frequencies of optical signals respectively transmitted by a plurality of optical transmitters and a central frequency interval indicating the interval between the central frequencies, power measurement values obtained by measuring, at sampling point frequencies arranged at a prescribed sampling interval, the power of a WDM signal for which the wavelength of optical signals has been multiplexed, a sampling interval, and sampling point frequencies, that selects a selection value from among the power measurement values on the basis of the central frequency interval and the sampling interval, and that outputs a result of comparison between the selection value and a prescribed threshold; and an alarm generator that outputs a signal interruption alarm in a case where the comparison result indicates that the selection value is less than the threshold.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: April 14, 2020
    Assignee: NEC CORPORATION
    Inventor: Yoshirou Satou
  • Patent number: 10615904
    Abstract: A method and apparatus for transporting data through a single optical fiber (SOF) the method comprising the steps of providing (S1) transmission Tx, wavelength division multiplexed, WDM, data channels and reception Rx, wavelength division multiplexed, WDM, data channels having the same frequency grid with frequency gaps between the WDM data channels; frequency shifting (S2) the Tx-WDM data channels and/or the Rx-WDM data channels to avoid spectral overlap between the Tx-WDM data channels and the Rx-WDM data channels; combining (S3) the frequency shifted Tx-WDM data channels and the frequency shifted Rx-WDM data channels; and transporting (S4) data via the combined WDM data channels through said single optical fiber (SOF) in opposite directions.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: April 7, 2020
    Assignee: ADVA Optical Networking SE
    Inventor: Sander Jansen
  • Patent number: 10606146
    Abstract: A method for adjusting a radiation direction of an optical communication signal between a communication platform and a remote station includes: starting from an initial position of a beam deflection unit of the platform for steering the optical communication signal, adopting deflection positions of the beam deflection unit along two different lines of movement and in opposite directions along the lines of movement, the deflection positions being consistent with deflection angles having the same absolute value, each deflection position being held for a different period; measuring an intensity of the signal at the station; when an intensity change in the signal is discovered at the station, ascertaining a signal quality change in the signal and recording the duration of this intensity change; determining that intensity change that pertains to the best signal quality change, and the associated duration; changing the intensity of a guidance beam for the duration previously determined.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 31, 2020
    Assignee: Tesat-Spacecom GmbH & Co. KG
    Inventor: Frank Heine
  • Patent number: 10608750
    Abstract: Methods and systems for a narrowband, non-linear optoelectronic receiver are disclosed and may include amplifying a received signal, limiting a bandwidth of the received signal, and restoring the signal utilizing a level restorer, which may include a non-return to zero (NRZ) level restorer. The NRZ level restorer may include a pulse-triggered bistable circuit, which may include two parallel inverters, with one being a feedback path for the other. The inverters may be single-ended or differential. A photogenerated signal may be amplified in the receiver utilizing a transimpedance amplifier and programmable gain amplifiers (PGAs). A received electrical signal may be amplified via PGAs. The bandwidth of the received signal may be limited utilizing one or more of: a low pass filter, a bandpass filter, a high pass filter, a differentiator, or a series capacitance on the chip. The signal may be received from a photodiode integrated on the chip.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: March 31, 2020
    Assignee: Luxtera, Inc.
    Inventor: John Andrew Guckenberger
  • Patent number: 10608775
    Abstract: An optical transmission apparatus includes a splitter configured to split a first wavelength division multiplexed optical signal arranged in a first wavelength band and a second wavelength division multiplexed optical signal arranged in a second wavelength band, respectively, from an optical signal including the first wavelength division multiplexed optical signal and the second wavelength division multiplexed optical signal, a wavelength converter configured to convert a wavelength of the split second wavelength division multiplexed optical signal to generate a third wavelength division multiplexed optical signal to be arranged in the first wavelength band, an optical monitor configured to monitor power of each wavelength channel of the third wavelength division multiplexed optical signal, and a transmitter configured to transmit a monitoring result by the optical monitor to a transmission source node of the optical signal or a relay node of the optical signal.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: March 31, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Shinji Komiya, Norifumi Shukunami, Makoto Hasegawa, Tomohiro Yamauchi, Tomoyuki Kato
  • Patent number: 10587341
    Abstract: Conventional HDMI optical cables are structured to be unable to normally transmit connection detection between HDMI transmission device and reception device, and unable to avoid a communication failure. Therefore, a phenomenon in which an image is distorted or does not appear occurs. By using an HDMI optical cable and an HDMI optical conversion device in which an electronic circuit switch having a device connection detection function, a voltage converter, a detection sensor, and a detection signal transmission-only wire are embedded in a connector and a cable, respectively, it becomes possible to stably perform connection detection and communication between HDMI transmission device and reception device, and show an image.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: March 10, 2020
    Assignee: AIM ELECTRONICS CO., LTD.
    Inventor: Eishi Nakayama
  • Patent number: 10581528
    Abstract: A method for transmitting data from an electronic device to an electronic watch is provided, including emitting a first sequence of light signals with a first light source of the device at a light-intensity level among at least four light-intensity levels, the emitted first sequence corresponding to a code of data to be transmitted; emitting a second sequence of light signals at two light-intensity levels corresponding to clock phases, simultaneously to the emitted first sequence, with a second light source of the device; detecting successive light-intensity levels with a first phototransistor of a watch, to reconstitute a sequence of data; detecting a succession of the two light-intensity levels with a second phototransistor of the watch, to reconstitute the clock phases, the first and the second sequences emitted at two distinct wavelengths; and decoding the sequence of data by a sequence of the clock phases to reconstitute the data.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: March 3, 2020
    Assignee: ETA SA Manufacture Horlogere Suisse
    Inventor: Thierry Bonnet