Patents Examined by Abbas H Alagheband
  • Patent number: 11716164
    Abstract: A full duplex communication network includes an optical transmitter end having a first coherent optics transceiver, an optical receiver end having a second coherent optics transceiver, and an optical transport medium operably coupling the first coherent optics transceiver to the second coherent optics transceiver. The first coherent optics transceiver is configured to simultaneously transmit a downstream optical signal and receive an upstream optical signal. The second coherent optics transceiver is configured to simultaneously receive the downstream optical signal from the first coherent optics transceiver and transmit the upstream optical signal first coherent optics transceiver. At least one of the downstream optical signal and the upstream optical signal includes at least one coherent optical carrier and at least one non-coherent optical carrier.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: August 1, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Zhensheng Jia, Luis Alberto Campos, Jing Wang, Mu Xu, Haipeng Zhang, Curtis Dean Knittle
  • Patent number: 11700078
    Abstract: Systems and methods for increasing throughput of a photonic processor by using photonic degrees of freedom (DOF) are provided. The photonic processor includes a multiplexer configured to multiplex, using at least one photonic DOF, multiple encoded optical signals into a multiplexed optical signal. The photonic processor also includes a detector coupled to an output of an optical path including the multiplexer, the detector being configured to generate a first current based on the multiplexed optical signal or a demultiplexed portion of the multiplexed optical signal. The photonic processor further includes a modulator coupled to and output of the detector, the modulator being configured to generate a second current by modulating the first current.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: July 11, 2023
    Assignee: Lightmatter, Inc.
    Inventors: Darius Bunandar, Michael Gould, Nicholas C. Harris, Carl Ramey
  • Patent number: 11700063
    Abstract: An apparatus embodiment includes a remote control interface unit configured to accept an appliance control code carried in a radio frequency signal transmitted from a smart phone, extract the appliance control code from the radio frequency signal, send the extracted appliance control code to an optical frequency interface, and initiate transmission of an optical frequency signal including the appliance control code to an appliance configured to receive signals from an optical remote control.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: July 11, 2023
    Inventors: Erik Volkerink, Miriam van Ringelestijn
  • Patent number: 11664903
    Abstract: A method and apparatus for generating a four-level pulse amplitude modulation (PAM-4) optical signal are disclosed. The method of generating a PAM-4 optical signal may include outputting a PAM-4 electrical signal, generating a PAM-4 optical signal based on the PAM-4 electrical signal, extracting feature information of the PAM-4 electrical signal from the PAM-4 electrical signal, and generating a control signal to control an operation of generating the PAM-4 electrical signal based on the feature information.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: May 30, 2023
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Jyung Chan Lee
  • Patent number: 11664920
    Abstract: An optical transmission apparatus includes a multiplexing unit multiplexing signal light of a main signal, and dummy lights of odd channel and an even channel emitted using first and second dummy light sources, respectively, a detection unit detecting abnormality of the first and second dummy light sources, and a control unit performing addition control. The addition control includes control in such a way that dummy light of an even channel emitted using the first dummy light source is additionally multiplexed with the signal light, when no abnormality is found in the first dummy light source and an abnormality of the second dummy light source is detected, and that dummy light of an odd channel emitted using the second dummy light source is additionally multiplexed with the signal light, when no abnormality is found in the second dummy light source and an abnormality of the first dummy light source is detected.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: May 30, 2023
    Assignee: NEC CORPORATION
    Inventor: Yoshirou Satou
  • Patent number: 11664900
    Abstract: An optical communications system includes a laser transmitter to generate an optical signal and a first optical fiber network coupled to transmit the optical signal from the laser transmitter system. A first latchable, asymmetric coupler is disposed along the first optical fiber network to receive the optical signal, and has a first tap output that receives a selected and alterable first fraction of the optical signal. A second latchable, asymmetric coupler is disposed along the first optical fiber network to receive the optical signal from the first latchable asymmetric coupler and has a second tap output that receives a selected and alterable second fraction of the optical signal incident at the second latchable. In certain embodiments the first and second couplers are capable of operating at any of at least three tapping fractions.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: May 30, 2023
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Jan Watté, Salvatore Tuccio, Vivek Panapakkam Venkatesan, Saurav Kumar
  • Patent number: 11658748
    Abstract: An optical transmitter transmits a data signal. The optical transmitter has an encoder configured to encode the data signal by selecting based on a bit sequence a first symbol and a second symbol from a set of four symbols for each one of at least two transmission time slots. The optical transmitter further has a modulator configured to use in each transmission time slot the first symbol to modulate a first carrier wave and the second symbol to modulate a second carrier wave, and to transmit the two carrier waves over orthogonal polarizations of an optical carrier. Symbols in consecutive transmission time slots have non-identical polarization states.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: May 23, 2023
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Djalal Falih Bendimerad, Hartmut Hafermann, Huijian Zhang
  • Patent number: 11658747
    Abstract: There is provided an optical waveguide that performs propagation only in a reference mode at a first wavelength. Communication is performed using light of a second wavelength that enables the optical waveguide to perform propagation in at least a first order mode in addition to the reference mode. When light entering the optical waveguide deviates with respect to an optical axis or deviates angularly, propagation is performed in at least the first order mode in addition to the reference mode, the first order mode being generated due to the deviation with respect to the optical axis or the angular deviation. This results in a reduction in a loss of coupling of optical power. This makes it possible to relax the accuracy with respect to a deviation with respect to an optical axis or an angular deviation, and thus to reduce costs.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: May 23, 2023
    Assignee: SONY GROUP CORPORATION
    Inventors: Hiroshi Morita, Kazuaki Toba, Masanari Yamamoto, Yusuke Oyama
  • Patent number: 11641238
    Abstract: Disclosed are a signal transmission and reception method and device in a wireless communication system. A method for receiving a signal by a terminal in a wireless communication system according to an embodiment of the present specification comprises the steps of: receiving configuration relating to a signal which is down-converted in frequency on the basis of an O/E converter; and receiving the signal in a particular resource region on the basis of the configuration. A frequency domain of the particular resource region comprises a plurality of chunks. The chunks comprise at least one component carrier (CC). The configuration comprises information indicating a main chunk relating to differential phase shift keying (DPSK). The transmission of the signal is on the basis of the DPSK applied between the chunks in the frequency domain with respect to the main chunk.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: May 2, 2023
    Assignee: LG Electronics Inc.
    Inventors: Kukheon Choi, Sangrim Lee
  • Patent number: 11637630
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: April 25, 2023
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Patent number: 11637635
    Abstract: Systems and methods for calibrating a Raman amplifier in a photonic line system of an optical network are provided. A method, according to one implementation, includes the step of setting the gain of a plurality of pump lasers of a Raman amplifier to a safe level. For example, the pump lasers are configured to operate at different wavelengths. Also, the Raman amplifier is connected to a fiber span having a specific fiber-type. The safe can be defined as a level that keeps adverse intermodulation effects below a predetermined threshold regardless of the specific fiber-type. In addition, the method includes the step of increasing the gain of the pump lasers without prior knowledge of the specific fiber-type of the fiber span while keeping the adverse intermodulation effects below the predetermined threshold.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: April 25, 2023
    Assignee: Ciena Corporation
    Inventor: Choudhury A. Al Sayeed
  • Patent number: 11632184
    Abstract: To suppress the deterioration of the characteristics of a MIMO equalizer as well as minimizing an increase in circuit size in spite of the occurrence of signal spectrum narrowing and asymmetric spectrum degradation, a wavelength-division multiplexing optical transmission system (10) according to an embodiment includes a transmitter (1) that generates one channel signal by wavelength-division multiplexing a plurality of subcarrier signals so as to overlap each other and transmits the channel signal, and a receiver (2) that separates a received channel signal into subcarrier signals, and performs equalization using an MIMO equalizer (3) including a FDE-MIMO equalizer (4) and a TDE-MIMO equalizer (5) on each of the separated subcarrier signals.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: April 18, 2023
    Assignee: NEC CORPORATION
    Inventors: Hidemi Noguchi, Junichi Abe, Masaki Sato
  • Patent number: 11626929
    Abstract: Described herein are optical phased array receivers. In various embodiments, an optical phased array receiver includes a set of antennas, each antenna configured to receive an optical signal; a local oscillator configured to generate one or more optical carrier signals; one or more optical signal combiners coupled to the set of antennas and the local oscillator, the one or more optical signal combiners configured to combine (i) the optical signals received by the antennas and (ii) the optical carrier signal; and one or more photodetectors configured to extract information carried by one or more of the received optical signals into an electrical signal, wherein the extracted information is indicative of a phase and an amplitude of the one or more of the received optical signals.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: April 11, 2023
    Assignee: University of Southern California
    Inventor: Hossein Hashemi
  • Patent number: 11627447
    Abstract: Techniques for determining an alternative communication mode for vehicle-to-vehicle communication at a host vehicle can include monitoring the primary mode of RF communication to ensure it is effectively communicating and, if not, intelligently selecting a backup communication mode comprising one or more other sensors and/or systems of the vehicle. The selection of the backup communication mode may take into account various factors that can affect the various modes of communication from which the backup communication mode is selected.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: April 11, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Mohammed Ataur Rahman Shuman, Amit Goel, Volodimir Slobodyanyuk, Arnold Jason Gum
  • Patent number: 11621781
    Abstract: A method, system, and apparatus enabled to selectively choose a baud rate for communication of optical data using a modem enabled to operate with an optical signal modulated at plurality of finely tuned baud rates.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 4, 2023
    Assignee: Acacia Communications, Inc.
    Inventor: Jonas Geyer
  • Patent number: 11621778
    Abstract: An optical communication system having an optical transmission line, where a first section of the optical transmission line is connected to a first optical communication device; and a second section of the optical transmission line is connected to a second optical communication device. The optical communication system further includes: a Raman light source; an incident device connected to same end of the second section of the optical transmission line as the second optical communication device; and a separating device interconnecting the first section of the optical transmission line to the second section of the optical transmission line. The incident device causes excitation light output from the Raman light source to be incident to the second section of the optical transmission line and performs distributed Raman amplification on the optical signal; and the separating device separates the excitation light that is caused to be incident by the incident device.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: April 4, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Masamichi Fujiwara, Ryo Igarashi, Takuya Kanai
  • Patent number: 11616569
    Abstract: A method for establishing a free-space data transmission channel between movable and/or spatially fixed network nodes. Dynamic position information is collected regarding movable network nodes and static position information relating to spatially fixed network nodes. Specific and node-dependent parameters for the fixed network nodes is collected, based on collected dynamic and static position information. A prioritization list is created of the fixed network nodes. Checking occurs, for the network node having the highest priority of the multiplicity of movable or spatially fixed network nodes in the created prioritization list, which of a selection of movable or spatially fixed network nodes are possible for setting up a directional free-space data transmission channel with the network node having the highest priority of the fixed network nodes. A directional free-space data transmission channel is set up.
    Type: Grant
    Filed: November 28, 2021
    Date of Patent: March 28, 2023
    Assignee: Airbus Defence and Space GmbH
    Inventors: Kevin Shortt, Sergio Feo-Arenis, Philipp Helle, Carsten Strobel
  • Patent number: 11616591
    Abstract: This disclosure describes C and L band optical communications module link extender, and related systems and methods. An example method may include receiving, by a dense wave division multiplexer (DWDM) at a headend, one or more optical data signals over a C band and an L band. The example method may also include combining the one or more optical data signals. The example method may also include outputting a second signal to a first WDM at the headend. The example method may also include separating, by the first WDM, the second signal into a C band signal and an L band signal. The example method may also include outputting the C band signal to a first amplifier at the headend and the L band signal to a second amplifier at the headend. The example method may also include amplifying, by the first amplifier, the C band signal. The example method may also include outputting an amplified C band signal to a coexistence filter.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: March 28, 2023
    Assignee: Cox Communications, Inc.
    Inventor: Harjinder S. Ghuman
  • Patent number: 11606149
    Abstract: An optical transmitter based on optical time division multiplexing is disclosed, which may solve the issues of complex structure and operation of a multilevel-OTDM-based optical transmitter while using a multilevel signal modulation format and OTDM technology that may increase the transmission rate of an optical transmitter with limited bandwidth.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: March 14, 2023
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sanghwa Yoo, Joon Young Huh, Sae-Kyoung Kang, Joon Ki Lee
  • Patent number: 11606147
    Abstract: An optical bench utilizing narrowband optical filters on precision rotary stages that can provide custom tuning of the operational frequencies of the optical bench while maintaining the ability to switch between narrowband and wideband operation thereof. The precision rotary filters may further provide dynamic reconfiguration of the optical bench to alternate frequencies for intersystem compatibility, the enablement of additional self-test capabilities, and easing the manufacturing tolerances thereof.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: March 14, 2023
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Michael J. Powers, Robert Carlson