Patents Examined by Abdullah Nur
  • Patent number: 10900892
    Abstract: There is provided a method of validating a calibration of a sensor represented by a calibrated relationship between concentration of an analyte in a sample and measurements from a sensor of an optical property of a sensing substance, wherein the optical property of the sensing substance has a spectrum that varies with the concentration of the analyte in the sample, and the spectrum has an isosbestic wavelength at which the optical property does not vary with concentration of the analyte, the method comprising making measurements of the optical property at three or more wavelengths of light while the sensing substance is exposed to the sample, determining whether the measurements of the optical property are inconsistent with the calibrated relationship, and outputting a warning signal in response to the measurements of the optical property being inconsistent with the calibrated relationship.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: January 26, 2021
    Assignee: SciLogica Corp.
    Inventors: Alasdair Allan Mackenzie, Barry Colin Crane, Nicholas Paul Barwell, Praveen Sagar, Robert Perkins
  • Patent number: 10794763
    Abstract: An optical system having an OAP mirror collimator is disclosed with a housing, an OAP mirror located within the housing and has an optical axis, a fold plane and a focal point. A fiber optical cable is coupled to the housing and has first and second optical fibers, each having an exit end that form a common end face of the fiber optic cable, wherein the fiber optical cable is rotationally and translationally aligned to the OAP mirror such that the common face is perpendicular to and centered upon the optical axis of the OAP mirror and positioned a fixed distance from the focal point, and wherein the optical axes of the first and second optical fibers are jointly angularly aligned to the fold plane, and the optical axes of the first and second optical fibers deviate from being parallel to the optical axis by no more than 0.15 degrees.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 6, 2020
    Assignee: Verity Instruments, Inc.
    Inventors: Mark A. Meloni, John D. Corless
  • Patent number: 10539776
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 21, 2020
    Assignee: SamanTree Medical SA
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss
  • Patent number: 10260944
    Abstract: A spectrometer includes a support having a bottom wall part in which a depression including a concave curved inner surface and a peripheral part adjacent to the depression are provided, and a side wall part disposed on a side on which the depression is open with respect to the bottom wall part, a light detection element supported by the side wall part while opposing the depression, and a dispersive part disposed on the inner surface of the depression. A length of the depression in a second direction in which a plurality of grating grooves included in the dispersive part is aligned is larger than a length of the depression in a third direction orthogonal to the second direction when viewed in a first direction in which the depression and the light detection element oppose each other. An area of the peripheral part adjacent to the depression in the second direction is larger than an area of the peripheral part adjacent to the depression in the third direction when viewed in the first direction.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: April 16, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takafumi Yokino, Katsumi Shibayama, Katsuhiko Kato
  • Patent number: 10234694
    Abstract: A novel endoscope, which can be a spectrally encoded endoscope (SEE) probe having forward-view, side-view, or a combination of forward and side views is provided herein. The SEE probe includes a light guiding component, a light focusing component, and a grating component. The probe is configured to forward a light such as a spectrally dispersed light from the grating component to a sample with no intermediate reflections between light guiding component and the grating component. A triangular grating, such as a staircase grating or an overhang grating may be used as the grating component.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: March 19, 2019
    Assignee: Canon U.S.A., Inc.
    Inventors: Zhuo Wang, Seiji Takeuchi
  • Patent number: 9909991
    Abstract: Methods (600) and systems (100) for inspecting an indirect bandgap semiconductor structure (140) are described. A light source (110) generates light (612) suitable for inducing photoluminescence in the indirect bandgap semiconductor structure (140). A short-pass filter unit (114) reduces long-wavelength light of the generated light above a specified emission peak. A collimator (112) collimates (616) the light. A large area of the indirect bandgap semiconductor structure (140) is substantially uniformly and simultaneously illuminated (618) with the collimated, short-pass filtered light. An image capture device (130) captures (620) images of photoluminescence simultaneously induced by the substantially uniform, simultaneous illumination incident across the large area for the indirect bandgap semiconductor structure.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: March 6, 2018
    Assignee: BT IMAGING PTY LIMITED
    Inventors: Thorsten Trupke, Robert Andrew Bardos
  • Patent number: 9653268
    Abstract: A method of manufacturing a vitreous silica crucible includes an inspection method comprising: a measurement step of measuring an infrared absorption spectrum or a Raman shift of a measurement point on an inner surface of the vitreous silica crucible; a determining step of predicting whether a surface defect region is generated or not in the measurement point based on an obtained spectrum to determine a quality of the vitreous silica crucible.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: May 16, 2017
    Assignee: SUMCO CORPORATION
    Inventors: Toshiaki Sudo, Tadahiro Sato, Ken Kitahara, Masami Ohara
  • Patent number: 9450330
    Abstract: A connector assembly configured to join an induction coil to a radio frequency generator to provide together with a plasma torch, an inductively coupled plasma source for a spectrometer is disclosed. The connector assembly includes a radial clamping member associated with the radio frequency generator and a sealing member. The radial clamping member has an internal surface configured to receive an end of an induction coil. The connector assembly is configured to provide a secure connection between the end of the induction coil and the RF generator that is substantially electrically conductive and substantially liquid-tight without causing lasting deformation of the radial clamping member or the induction coil. An inductively coupled plasma spectrometer comprising such a connector assembly and a method for securing a connection between an induction coil and a radio frequency generator are also disclosed.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: September 20, 2016
    Assignee: Agilent Technologies, Inc.
    Inventor: Craig Peters
  • Patent number: 9366634
    Abstract: This invention discloses a substrate enhanced laser-induced breakdown spectroscopy (LIBS) apparatus for liquid analysis. The LIBS apparatus comprises a pulsed laser for producing a laser beam, a substrate made of a material having a high absorption coefficient at the laser wavelength for receiving the liquid sample, an optical lens or mirror for focusing the laser beam onto the liquid sample to produce a plasma emission, and a spectrometer for measuring the optical spectrum of the plasma emission. When the thickness of the liquid sample reaches an optimum value, the plasma emission from the liquid sample is enhanced by the substrate to produce a strong LIBS signal for spectral analysis.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: June 14, 2016
    Assignee: BWT Property, Inc.
    Inventors: Sean Xiaolu Wang, Qun Li
  • Patent number: 9239298
    Abstract: There are provided an optical measurement probe capable of obtaining a more stable measurement result, and an optical measurement device provided with the same. An incidence surface of an optical window to be used in a high temperature environment is covered by a deposited film. The optical window is formed of sapphire, and the deposited film is formed from SiO2. Adhesion of dirt to the incidence surface, and an influence, on a measurement result, of the adhesion of dirt on the incidence surface can thereby be prevented, and a more stable measurement result can be obtained.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: January 19, 2016
    Assignees: SHIMADZU CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Tetsuya Nagai, Nobuyuki Iwai, Yasuyuki Furukawa, Ryoji Hiraoka, Isao Azumagakito, Satoru Okada
  • Patent number: 9201000
    Abstract: Sensor material is arranged to interact with input light and to asymmetrically alter a spectral distribution of the input light in response to presence of an external stimulus. A detector is configured to sense the altered input light and to generate at least one electrical signal comprising information about a shift in the centroid of a spectral distribution of the altered input light relative to a centroid of the spectral distribution of the input light.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: December 1, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Peter Kiesel, Alexander Lochbaum, Ajay Raghavan, Bhaskar Saha, Tobias Staudt, Lars Wilko Sommer
  • Patent number: 9036146
    Abstract: An analysis system includes a laser source generating a laser beam for creating a plasma at a location on a sample. A spectrometer is responsive to photons emitted by the sample at said location and has an output. At least one nozzle is configured to deliver inert gas from a source locally to the location on the sample. A controller is responsive to a trigger signal and is configured to activate the laser source generating a series of laser pulses, open a valve to purge the location locally on the sample, and close the valve after one or more laser pulses.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: May 19, 2015
    Assignee: SciAps, Inc.
    Inventor: David Day
  • Patent number: 8670119
    Abstract: According to an example, an apparatus for performing spectroscopy includes a perimeter wall extending between a first end and a second end of the perimeter wall along a first axis, in which an interior surface of the perimeter wall forms a hollow core extending along the first axis. The perimeter wall has openings at both the first end and the second end and light is to pass through the perimeter wall. The apparatus also includes a plurality of SES modules positioned around an inner circumference of the perimeter wall in a spaced arrangement with respect to each other to allow light to enter into the hollow core in gaps between the plurality of SES modules, in which each of the plurality of SES modules is positioned substantially across from a gap.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: March 11, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M Bratkovski, Zhiyong Li, Gary Gibson
  • Patent number: 8599374
    Abstract: A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object (e.g., scene of interest). In one aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has at least one spiral slit formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In another aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has multiple straight slits formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In yet another aspect, the hyperspectral imaging system includes at least one optic, a rotatable drum (which has a plurality of slits formed on the outer surface thereof and a fold mirror located therein), a spectrometer, a two-dimensional image sensor, and a controller.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 3, 2013
    Assignee: Corning Incorporated
    Inventors: Lovell Elgin Comstock, II, Richard Lynton Wiggins, Kenneth Smith Woodard
  • Patent number: 8542355
    Abstract: A light amplifying device for surface enhanced Raman spectroscopy is disclosed herein. The device includes a dielectric layer having two opposed surfaces. A refractive index of the dielectric layer is higher than a refractive index of a material or environment directly adjacent thereto. At least one opening is formed in one of the two opposed surfaces of the dielectric layer, and at least one nano-antenna is established on the one of the two opposed surfaces of the dielectric layer. A gain region is positioned in the dielectric layer or adjacent to another of the two opposed surfaces of the dielectric layer.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: September 24, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David A. Fattal, Jingjing Li, Zhiyong Li, Shih-Yuan Wang
  • Patent number: 8310672
    Abstract: A method and a device for generating and for detecting a Raman spectrum enables an automated, or automatable, and at the same time quantitative SERD spectroscopy (for example concentration measurement series). To this end, during the SERD spectroscopy, a first spectrum and a second spectrum are standardized in relation to one another in terms of intensity values and a first difference spectrum is subsequently calculated, a second difference spectrum is calculated, the first difference spectrum is converted into a first transformation spectrum, the second difference spectrum is converted into a second transformation spectrum, and the Raman spectrum is calculated by adding the first transformation spectrum and the second transformation spectrum.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: November 13, 2012
    Assignee: Forschungsverbund Berlin E.V.
    Inventors: Heinar Schmidt, Daniel Pérez Kaiser, Martin Maiwald
  • Patent number: 7944559
    Abstract: A hyperspectral imaging system has fore-optics including primary, secondary and tertiary fore-optics mirrors, and an imaging spectrometer including primary, secondary and tertiary spectrometer mirrors. Light from a distant object is collected by the primary fore-optics mirror, and the tertiary fore-optics mirror forms an intermediate object image at an entrance side of a spectrometer slit. The spectrometer mirrors are configured so that light from an exit side of the slit is diffracted by a grating on the secondary mirror, and an image representing spectral and spatial components of the object is formed by the tertiary spectrometer mirror on a focal plane array. The surface of each mirror of the fore-optics and the spectrometer has an associated axis of symmetry. The mirrors are aligned so that their associated axes coincide to define a common system axis, thus making the imaging system easier to assemble and align in relation to prior systems.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: May 17, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mark Oskotsky, Michael J. Russo, Jr.