Patents Examined by Abibatu O Ojo-Amoo
  • Patent number: 10756321
    Abstract: The present invention relates generally to electrochemical energy storage devices such as Li-ion batteries, and more particularly to a method of providing uniform ceramic coatings with controlled thicknesses for separators in such storage devices. Some embodiments of the invention utilize a layer by layer coating of nano/micro-sized particles dispersed in a solvent, which can be aqueous or non-aqueous. Other embodiments of the invention utilize a dry process such as PVD for depositing a ceramic film on a porous polyolefin separator. According to certain aspects of the invention, advantages of this approach include the ability to achieve a denser more uniform film with better controlled thickness with less waste and higher yield than current ceramic coating technology. An advantage of a ceramic coated separator is increased safety of cells.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Subramanya P. Herle, Joseph G. Gordon
  • Patent number: 10686165
    Abstract: An electrode assembly and a secondary battery including the same, the electrode assembly including a plurality of first polar plates, each first polar plate including a first coating portion coated with a first active material, and a bent first non-coated portion; a plurality of second polar plates, each second polar plate including a second coating portion coated as a second active material, and a bent second non-coated portion; and a plurality of separators between the first polar plates and the second polar plates.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 16, 2020
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Hyunhwa Song, Junwon Suh, Jeong-Doo Yi, Juhee Sohn
  • Patent number: 10644306
    Abstract: A lithium secondary battery comprises a cathode active material including a first cathode active material particle having a concentration gradient region and a second cathode active material particle having a single particle structure, to obtain improved electrical performance and mechanical stability.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: May 5, 2020
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Young Hoon Do, Yong Hyun Cho, Min Gu Kang, Soo Ho Kim
  • Patent number: 10637028
    Abstract: Disclosed are a separator and an electrochemical device comprising the same, the separator comprising: a porous substrate having a plurality of pores; and a porous coating layer formed on at least one surface of the porous substrate and in at least one type of region of the pores of the porous substrate, the porous coating layer containing a plurality of inorganic particles and a binder polymer disposed on a part or the entirety of the surface of the inorganic particles to connect and fix the inorganic particles, wherein the binder polymer contains a copolymer including a vinylidene fluoride-derived repeat unit, a hexafluoropropylene-derived repeat unit, and a maleic acid monomethyl ester-derived repeat unit.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: April 28, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Su-Jin Yoon, Min-Ji Kim
  • Patent number: 10608264
    Abstract: A fuel cell system includes an auxiliary machine driven by power of the fuel cell, a heater electrically connected to the fuel cell and configured to heat cooling water supplied to the fuel cell, and a warm-up control unit configured to control power supply to the auxiliary machine and the heater during start-up of the fuel cell below freezing point. The warm-up control unit is configured to compute a produced water amount until the temperature of the fuel cell increases to a freezing point temperature on the basis of a degree of wetness and a temperature of the fuel cell and a generated power of the fuel cell during warm-up, and increase a power ratio of power to the heater in regards to the auxiliary machine during the warm-up when the computed produced water amount is determined to be larger than a threshold value.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: March 31, 2020
    Assignee: NISSAN MOTOR CO., LTD.
    Inventor: Kiyoshi Hoshi
  • Patent number: 10586956
    Abstract: A pouch type secondary battery and a method of manufacturing the same are disclosed. The pouch type secondary battery includes a pouch type case formed by attaching an upper sheet and a lower sheet, and an electrode assembly received in the pouch type case. A polymer coating layer for improving sealability is further included at an outer side portion of the pouch type case, in which the upper sheet and the lower sheet are attached.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: March 10, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Jeoung Hwan Kim, Shin Hwa Lee, Woo Yong Lee, Min Su Kim, Hyang Mok Lee
  • Patent number: 10566618
    Abstract: The present invention provides a cell that has a high theoretical voltage and theoretical capacity, and can be discharged and recharged multiple times. The cell includes a cathode, an anode, and an electrolyte, wherein the cathode contains a cathode active material containing an alkali metal compound represented by the formula (1): AxOy??(1) (wherein A is an alkali metal atom, x is 0.5 to 2.5, and y is 0.5 to 2.5), the anode contains an anode active material containing at least one selected from the group consisting of an alkali metal, tin, titanium, boron, nitrogen, silicon, and carbon, and the cathode, the anode, and the electrolyte are hermetically sealed in the cell.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: February 18, 2020
    Assignees: The University of Tokyo, Nippon Shokubai Co., Ltd.
    Inventors: Noritaka Mizuno, Tetsuichi Kudo, Mitsuhiro Hibino, Yoshiyuki Ogasawara, Yosuke Suga, Atsuo Yamada, Yuki Yamada, Shin-ichi Okuoka, Koji Yonehara, Hironobu Ono, Yasutaka Sumida
  • Patent number: 10535869
    Abstract: Provided are a positive active material, a lithium battery including the positive active material, and a method of manufacturing the positive active material. The positive active material includes a lithium molybdate composite having a core-shell structure. The lithium molybdate composite acts as a sacrificial positive electrode in a positive electrode of a battery. The positive active material is able to increase charge capacity of a lithium battery, and accordingly is able to improve lifetime properties of a lithium battery.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: January 14, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Young-Ki Kim, Young-Hun Lee, Ick-Kyu Choi, Yong-Chul Park, Soon-Rewl Lee
  • Patent number: 10522860
    Abstract: Apparatus are provided for a hybrid fuel cell system. The hybrid fuel cell system includes a fuel supply system. The fuel supply system includes a fuel source, a reforming subsystem and a depressurization system. The fuel source is in fluid communication with the reforming subsystem. The reforming subsystem reforms the fuel from the fuel source to generate hydrogen enriched gases, and the reforming subsystem is in fluid communication with the depressurization system. The depressurization system reduces a pressure of the hydrogen enriched gases. The hybrid fuel cell system also includes a fuel cell stack in communication with the depressurization system to receive the hydrogen enriched gases at the reduced pressure.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: December 31, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Daguang Zheng, Dacong Weng
  • Patent number: 10490782
    Abstract: A rechargeable battery capable of preventing rust generation at an opening side of a battery case. The rechargeable battery according to embodiments of the present invention includes: an electrode assembly; a case having an opening and accommodating the electrode assembly; and a cap assembly electrically connected to the electrode assembly, and coupled to an opening side of the case with a gasket interposed therebetween, wherein the opening side of the case includes a trimming end, a gap proximate the trimming end, and a coating layer on an inner surface of the gap proximate the trimming end.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: November 26, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-Il Seong, Hideaki Yoshio, Ji-Won Yun
  • Patent number: 10461316
    Abstract: A metal foil electrode comprising i) a reinforcement layer formed from a porous substrate, and ii) first and second layers of metal foil formed comprising lithium and/or sodium, wherein the reinforcement layer is disposed between the first and second metal foil layers and bonded (preferably pressure bonded) together to form a composite structure having a thickness of 100 microns or less.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: October 29, 2019
    Assignee: Oxis Energy Limited
    Inventors: Vladimir Kolosnitsyn, Elena Karaseva
  • Patent number: 10454131
    Abstract: A secondary battery includes a first electrode assembly comprising a first separator in a serpentine form and first and second electrode plates that are respectively located on two surfaces of the first separator at different positions; and a second electrode assembly comprising a second separator in a serpentine form and third and fourth electrode plates that are respectively located on the second separator at different positions, wherein the first separator, to which the first and second electrode plates are combined, is bent with respect to ends of the first and second electrode plates so that the portion of the first separator is located on the second separator, and the second separator, on which the third and fourth electrode plates are combined, is bent with respect to ends of the third and fourth electrode plates so that the portion of the second separator is located on the first separator.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: October 22, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jaekyung Cho, Jinho So, Daewook Ki, Gisung Kim
  • Patent number: 10454076
    Abstract: A rechargeable battery according to an exemplary embodiment of the present invention includes: an electrode assembly including electrodes at opposite sides of a separator, each of the electrodes having a coated region and an uncoated region, and the electrodes and the separator being spirally wound; an insulating case for accommodating the electrode assembly and allowing the uncoated regions to be drawn out through respective uncoated region holes; a case for accommodating the insulating case; and a cap plate coupled to an opening of the case and allowing electrode terminals respectively coupled to the uncoated regions to be drawn out through respective terminal holes.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: October 22, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Kyoon Park, Yong-Chul Seo, Seung-Ho Kwak, Joong-Heon Kim
  • Patent number: 10439224
    Abstract: A positive electrode for non-aqueous electrolyte secondary battery suppresses a decrease in discharge capacity under a high output condition while minimizing an increase in battery temperature in an overcharged state of the battery. The positive electrode includes: a positive electrode current collector; and a positive electrode active material layer that is formed on a surface of the positive electrode current collector, contains a positive electrode active material and a conductive aid, and has a BET specific surface area of from 1 to 3 m2/g, in which the conductive aid contains a first conductive aid and a second conductive aid having a larger average particle diameter than the first conductive aid. The content of the first conductive aid is greater than the content of the second conductive aid in the positive electrode active material layer.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: October 8, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Kodai Nagano
  • Patent number: 10439251
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: October 8, 2019
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko, Kian Kerman
  • Patent number: 10403932
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Set forth herein are methods for preparing novel structures, including dense thin free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: September 3, 2019
    Assignee: QuantumScape Corporation
    Inventors: Dong Hee Anna Choi, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Mohit Singh, Adrian Winoto
  • Patent number: 10403869
    Abstract: The present disclosure includes a battery module that includes a housing having a stack of battery cells. Each battery cell of the stack of battery cells includes a terminal end having at least one cell terminal and a face oriented transverse to the terminal end. The battery module also includes adhesive tape disposed between a first face of a first battery cell of the stack of battery cells and a second face of a second battery cell of the stack of battery cells, and where the adhesive tape fixedly couples the first battery cell to the second battery cell, and where a first terminal end of the first battery cell is substantially aligned with a second terminal end of the second battery cell.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: September 3, 2019
    Assignee: CPS TECHNOLOGY HOLDINGS, LLC
    Inventors: Matthew R. Tyler, Jennifer L. Czarnecki
  • Patent number: 10396414
    Abstract: A thermal management system for a battery pack having at least one battery cell is provided. The thermal management system may include a cooling plate disposed adjacent to the at least one battery cell. The cooling plate may include thermal pyrolytic graphite (TPG) to dissipate heat away from the at least one battery cell.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: August 27, 2019
    Assignee: AVL Powertrain Engineering, Inc.
    Inventors: Kim F. Yeow, Ho Teng
  • Patent number: 10388985
    Abstract: The main object of the present invention is to provide a sulfide solid electrolyte material having favorable ion conductivity and high stability against moisture. The present invention solves the above-mentioned problem by providing a sulfide solid electrolyte material comprising an M1 element (such as Li element), an M2 element (such as Ge element, Sn element and P element) and a S element, and having a peak at a position of 2?=29.58°±0.50° in X-ray diffraction measurement using a CuK? ray, characterized in that when a diffraction intensity at the above-mentioned peak of 2?=29.58°±0.50° is regarded as IA and a diffraction intensity at a peak of 2?=27.33°±0.50° is regarded as IB, a value of IB/IA is less than 0.50, and the M2 contains at least P and Sn.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: August 20, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Kato, Takamasa Otomo, Mitsuru Sakano
  • Patent number: 10347936
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Set forth herein are methods for preparing novel structures, including dense thin free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: July 9, 2019
    Assignee: QuantumScape Corporation
    Inventors: Dong Hee Anna Choi, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Mohit Singh, Adrian Winoto