Patents Examined by Afework Demisse
  • Patent number: 9721524
    Abstract: A semiconductor integrated circuit includes a power line and a power supply circuitry. The power supply circuitry includes: a first power supply circuit operating on a first power supply voltage and having an output connected with the power line; and a second power supply circuit operating on a second power supply voltage higher than the first power supply voltage and having an output connected with the power line. The first power supply circuit is configured to drive the power line to a first preset, voltage. The second power supply circuit is configured to drive the power line to a second preset voltage lower than the first preset voltage. The second power supply circuit is configured not to decrease a third power supply voltage generated on the power line when the third power supply voltage is higher than the second preset voltage.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: August 1, 2017
    Assignee: Synaptics Japan GK
    Inventor: Teru Yoneyama
  • Patent number: 9716466
    Abstract: A power conversion apparatus, a photovoltaic module, and a communication device and a photovoltaic system including the same are discussed. The power conversion apparatus includes an inverter unit to perform alternating current (AC) voltage conversion based on direct current (DC) voltage from a solar cell module, a controller to control the inverter unit, and a communication unit to add a carrier frequency signal containing predetermined information to the converted AC voltage and output the AC voltage containing the predetermined information to a grid and, when a level of the converted AC voltage is equal to or less than a predetermined level, to add the carrier frequency signal containing the predetermined information to DC voltage and output the DC voltage containing the predetermined information to the grid. Consequently, it is possible to stably transmit information.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: July 25, 2017
    Assignee: LG Electronics Inc.
    Inventors: Dongho Han, Myonghwan Kim, Myungsoo Ham, Hyunho Do
  • Patent number: 9712057
    Abstract: Disclosed are a feedback control circuit and a method thereof. The feedback control circuit includes a voltage comparator, a calibration voltage generator and processor. The voltage comparator receives a middle-point voltage and a calibration voltage, compares the middle-point voltage and calibration voltage, and outputs a reference voltage pulse signal. The calibration voltage generator generates the calibration voltage and outputs it to a switch driving circuit and the voltage comparator. The processor compares the pulse widths of the reference voltage pulse signal and a predetermined voltage pulse signal, and accordingly outputs a control signal to the calibration voltage generator to fine tune the calibration voltage. The switch driving circuit outputs a switch driving signal to a switching regulating circuit to adjust the timing when to turn on or off switches in the switching regulating circuit.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: July 18, 2017
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventors: Shih-Chieh Chen, Chih-Cheng Lin
  • Patent number: 9705404
    Abstract: The present document relates to power converters. In particular, the present document relates to the protection of the power switches of power converters. A controller configured to control a switched-mode power converter is described. The controller comprises a control pin for controlling a state of a power switch of the switched-mode power converter using a control signal; and a sensing pin for receiving a sensed current signal indicative of a current through the power switch. The controller is configured to detect a break-through situation of the power switch based on the state of the power switch and based on the sensed current signal.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: July 11, 2017
    Assignee: Dialog Semiconductor GmbH
    Inventors: Horst Knoedgen, Manfred Weinacht
  • Patent number: 9698666
    Abstract: A power supply and a gate driver includes a power switching element to control current, a control circuit to output a control signal for opening or closing of the power switching element, and a gate drive circuit to open or close the power switching element in accordance with the control signal. The gate drive circuit includes a first inductive circuit connected to a supply voltage source, and a second inductive circuit connected to an input stage of the power switching element, and transfers electrical energy stored in the input stage of the power switching element, using the first and second inductive circuits. Accordingly, electrical energy supplied to the input stage of the power switching element during an ON state of the power switching element is again recovered during an OFF state of the power switching element.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: July 4, 2017
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SNU R&DB FOUNDATION
    Inventors: Jong Hyun Shin, Jaeha Kim, Hyun Soo Park, Jung-Ik Ha, Taewook Kang
  • Patent number: 9685857
    Abstract: The invention relates to a control device (1) employed in a switched electrical power supply system to control a DC/DC converter of said switched electrical power supply system, said control device comprising a first input terminal (A) and a second input terminal (B), a first transistor (T1) connected via its source to the second input terminal (B) and a second transistor (T2) furnished with a gate (G) and connected via its drain (D) to the first input terminal (A), and via its source (S) to the first transistor (T1), the control device comprising a control assembly connected to the gate (G) of the second transistor (T2) and to the second input terminal (B) and comprising a capacitor (Ca) and a first Zener diode (Dz1) connected in series to said capacitor (Ca) and a second Zener diode (Dz2) connected between the gate (G) and the source (S) of the second transistor (T2).
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: June 20, 2017
    Assignee: SCHNEIDER TOSHIBA INVERTER EUROPE SAS
    Inventors: Allan Barauna, Hocine Boulharts
  • Patent number: 9680380
    Abstract: Provided is a semiconductor device which drives a power semiconductor device, in which dead times generated when switch elements of upper and lower arms are turned on and off are minimized, and a loss of a power conversion device is reduced. A semiconductor device used in a power conversion device that includes a first switch element of which the drain is connected to a first power source voltage and a second switch element of which the source is connected to a second power source voltage includes a first drive circuit that drives the first switch element, a second drive circuit that drives the second switch element, a first level shift circuit, and a second level shift circuit. The first drive circuit is connected to a third power source voltage higher by a predetermined potential with respect to a source potential of the first switch element and the source potential of the first switch element.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: June 13, 2017
    Assignee: Hitachi, Ltd.
    Inventor: Satoru Akiyama
  • Patent number: 9673335
    Abstract: In a rectifier circuit, by using a transistor whose off-state current is small as a so-called diode-connected MOS transistor included in the rectifier circuit, breakdown which is caused when a reverse bias is applied is prevented. Thus, an object is to provide a rectifier circuit whose reliability is increased and rectification efficiency is improved. A gate and a drain of a transistor are both connected to a terminal of the rectifier circuit to which an AC signal is input. In the transistor, an oxide semiconductor is used for a channel formation region and the off-state current at room temperature is less than or equal to 10?20 A/?m, which is equal to 10 zA/?m (z: zepto), when the source-drain voltage is 3.1 V.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 6, 2017
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Koichiro Kamata
  • Patent number: 9667136
    Abstract: A totem-pole power factor correction circuit (totem-pole PFC) is connected behind an input inductor receiving electric power from an alternating current (AC) power source. The totem-pole PFC is provided, in a high-frequency working area thereof, with at least two current transformer elements or a center-tapped current transformer element. The waveform of current flowing through the totem-pole PFC during positive and negative half cycles of AC power is sensed via the current transformer elements or the center-tapped current transformer element. Thereby, current waveform for the input inductor during positive and negative half cycles may be realized via the obtained current waveform completely, such that the practical problems originating from the conventional necessity for the establishment of bulky Hall device or another current-sensing unit are solved specifically.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 30, 2017
    Assignee: SEA SONIC ELECTRONICS CO., LTD.
    Inventors: Pao-Tsun Lin, Ten-Chun Chen
  • Patent number: 9667160
    Abstract: A step-down DC converter configured to smooth ripple voltage. The step-down DC converter includes a ripple-filtering inductor, a power isolating and converting unit, a power switch, a first capacitor, a second capacitor, a first rectifying switch, a second rectifying switch, and a first inductor. The power isolating and converting unit includes a plurality of windings for separating the step-down-DC converter into an input stage and an output stage. The power switch and the first capacitor are arranged at the input stage, and the first capacitor is connected to the power switch. The second capacitor, the first rectifying switch, the rectifying switch, and the first inductor are arranged at the output stage, the second capacitor is connected to one terminal of the first inductor, and the other terminal of the first inductor is connected to the first rectifying switch and the second rectifying switch.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: May 30, 2017
    Assignees: ALLIS ELECTRIC CO., LTD.
    Inventors: Ching-Tsai Pan, Ming-Chieh Cheng
  • Patent number: 9660696
    Abstract: A power line communication (PLC) AC/DC adaptor includes a filter, a rectifier, a power factor correction circuitry, and a PLC module. The filter includes a differential mode choke and a common mode choke. The differential mode choke is coupled to AC. The common mode choke is coupled to the differential mode choke. The rectifier is coupled to the common mode choke. The power factor correction circuitry is coupled to the rectifier. The PLC module is coupled to AC to process a PLC signal from AC and output a control signal.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: May 23, 2017
    Assignees: Asys Corporation, IOT Technology Corporation
    Inventor: Tzu-Chieh Su
  • Patent number: 9632523
    Abstract: Aspects of the disclosure provide a circuit for peak voltage detection. The circuit includes a diode-based peak detector and a compensation circuit. The diode-based peak detector has a first diode, and is configured to receive a signal for peak voltage detection and generate a first voltage of a stable level indicative of a peak voltage of the signal based on the first diode. The compensation circuit has a second diode. The compensation circuit is configured to receive the first voltage and generate a second voltage of a stable level that is independent of the first diode.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: April 25, 2017
    Assignee: Marvell World Trade Ltd.
    Inventors: Ruiqiang Liu, Hongzheng Han, Tuo Wu
  • Patent number: 9627983
    Abstract: A control circuit and the control method for controlling the current voltage converter of a power conversion system in the start-up phase are disclosed. A first voltage is applied to the non-inverting input terminal of the comparator and a reference voltage is applied to the inverting input terminal of the comparator. When the first voltage exceeds the reference voltage, the comparison result from the comparator triggers the frequency of the clock signal generated by the oscillator to reduce preventing the primary current flowing through the primary winding of the transformer exceeding a pre-set value.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 18, 2017
    Assignee: Alpha & Omega Semiconductor (Cayman), Ltd.
    Inventors: Yu-Ming Chen, Jung-Pei Cheng, Pei-Lun Huang
  • Patent number: 9614453
    Abstract: An apparatus comprises an isolated power converter coupled between an input dc power source, wherein the isolated power converter comprises a first switch network coupled to a first transformer winding through a first resonant tank and a second switch network coupled to a second transformer winding through a second resonant tank and a dc/dc converter coupled to the second switch network.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: April 4, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Heping Dai, Liming Ye, Dianbo Fu, Daoshen Chen
  • Patent number: 9614094
    Abstract: An object is to suppress operation delay caused when a semiconductor device that amplifies and outputs an error between two potentials returns from a standby mode. Electrical connection between an output terminal of a transconductance amplifier and one electrode of a capacitor is controlled by a transistor whose channel is formed in an oxide semiconductor layer. Consequently, turning off the transistor allows the one electrode of the capacitor to hold charge for a long time even if the transconductance amplifier is in the standby mode. Moreover, when the transconductance amplifier returns from the standby mode, turning on the transistor makes it possible to settle charging and discharging of the capacitor in a short time. As a result, the operation of the semiconductor device can enter into a steady state in a short time.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 4, 2017
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Kazunori Watanabe
  • Patent number: 9614459
    Abstract: There is provided a method and control system for controlling a switching device in a power converter according to a modulation scheme. The switching device couples a direct current (DC) source to provide an alternating current (AC) output at a particular switching frequency. The method comprises the step of, in each switching period, switching the switching device between active configurations providing a finite voltage at the output and inactive configurations providing a zero voltage at the output. The ratio between the total period of time in which the switching device is in an active configuration and the total period of time in which the switching device is in an inactive configuration is the same for each switching period and is determined according to the desired voltage at the AC output.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: April 4, 2017
    Assignee: CONTROL TECHNIQUES LIMITED
    Inventors: Antony John Webster, Simon David Hart
  • Patent number: 9608522
    Abstract: A boost converter circuit receives an input power supply voltage and produces an output boosted supply voltage. The circuit includes a voltage regulator, boosting circuitry, and a timing controller. The voltage regulator provides a regulated voltage to the boosting circuitry, which controls switching a transistor to drive the output boosted supply voltage; and the timing controller controls switching the boost circuit from the start-up mode to the normal operation mode. In start-up mode, the regulated voltage is generated from the input power supply voltage. During normal operation mode, the regulated voltage is generated from the output boosted supply voltage. The circuitry performs a low-power start-up when the input power supply voltage is low, and maintains efficient low-power operation by driving the transistor to produce the output boosted supply voltage as the input power supply voltage decreases.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: March 28, 2017
    Assignee: STMICROELECTRONICS (SHENZHEN) R&D CO. LTD.
    Inventor: Hongwu Lin
  • Patent number: 9602021
    Abstract: A hybrid HVDC converter system includes a DC bus, at least one capacitor commutated converter (CCC) and at least one self-commutated converter (SCC) coupled in series through the DC bus. The CCC induces a first voltage on the DC buses, the SCC induces a second voltage on the DC bus, the first voltage and the second voltage are summed to define a total DC voltage. The method includes at least one of regulating the total DC voltage induced on the DC buses including regulating the first DC voltage through the CCC and regulating the second DC voltage through the SCC substantially simultaneously, regulating the total DC voltage induced on the DC bus including regulating the second DC voltage through the SCC, and regulating the total DC voltage induced on the DC bus including regulating the first DC voltage through the CCC.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 21, 2017
    Assignee: General Electric Company
    Inventors: Nilanjan Ray Chaudhuri, Ranjan Kumar Gupta, Einar Vaughn Larsen
  • Patent number: 9600012
    Abstract: A device connectable to a three-phase network, wherein the device includes a capacitor, a secondary coil, a diode and, per phase, a conductor and a circuit, where a secondary-side coil is connected in parallel to the capacitor via the diode, the circuit is configured such that a resistor is located in a conductor, a first capacitor is connected parallel to the resistor, a serial circuit of a first primary-side coil is connected in parallel to the first capacitor, energy transfer occurs from a first primary-side coil to a second primary-side coil and to the secondary-side coil, a second capacitor is connected in parallel to the second primary-side coil, the second capacitor is connected to the source connection of a self-conducting field effect transistor, and the gate connection of the self-conducting field effect transistor is connected to the second capacitor to provide an improved internal power supply for the device.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: March 21, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Maier, Uwe Weiss
  • Patent number: 9595862
    Abstract: A system comprises a first T-type inverter and a second T-type inverter connected to a dc power source and a first winding of a transformer, wherein the second T-type inverter is configured to operate with a first phase shift from the first T-type inverter, a third T-type inverter and a fourth T-type inverter connected to the dc power source and a second winding of the transformer, wherein the fourth T-type inverter is configured to operate with a second phase shift from the third T-type inverter and a fifth T-type inverter and a sixth T-type inverter connected to the dc power source and a third winding of the transformer, wherein the sixth T-type inverter is configured to operate with a third phase shift from the fifth T-type inverter.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: March 14, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Dianbo Fu, Yunfeng Liu