Patents Examined by Alan Diamond
  • Patent number: 7132041
    Abstract: A method of determining the concentration of an analyte in a fluid test sample that includes providing an electrochemical sensor adapted to measure the analyte in the test sample. The test sample sufficiently covers a counter and working electrode of the electrochemical sensor. A first potential is applied between the counter and working electrodes for a first predetermined time period and the current is measured and the time is recorded. After the first potential is removed or substantially reduced, a second potential is applied between the counter and working electrodes and the current is measured. The concentration of the analyte is determined in the test sample as a function of the current measured. An index is calculated and compared to at least one predetermined parameter to identify when a bias, if any, exceeds a threshold. An error signal or analyte concentration is displayed depending on the comparison.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: November 7, 2006
    Assignee: Bayer HealthCare LLC
    Inventors: Yingping Deng, Amy H. Chu
  • Patent number: 7126054
    Abstract: Disclosed is a dye-sensitized solar cell comprising a gel electrolyte that contains a gelling agent and an electrolyte, wherein the gelling agent contains at least one kind of a polymer selected from the group consisting of a first polymer in which polysulfonic acid is crosslinked by a metal ion having a valency of not less than two, a second polymer in which polycarboxylic acid is crosslinked by a metal ion having a valency of not less than two, a third polymer in which a quaternary ammonium salt of polysulfonic acid is crosslinked by a metal ion having a valency of not less than two and a fourth polymer in which a quaternary ammonium salt of polycarboxylic acid is crosslinked by a metal ion having a valency of not less than two.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: October 24, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Murai, Hiroyasu Sumino, Satoshi Mikoshiba, Shuji Hayase
  • Patent number: 7126052
    Abstract: A method of disordering a layer of an optoelectronic device including; growing a plurality of lower layers; introducing an isoelectronic surfactant; growing a layer; allowing the surfactant to desorb; and growing subsequent layers all performed at a low pressure of 25 torr.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: October 24, 2006
    Assignee: The Boeing Company
    Inventors: Christopher M. Fetzer, James H. Ermer, Richard R. King, Peter C. Cotler
  • Patent number: 7122736
    Abstract: A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) ?/second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) ?/second for the a-SiGe:H intrinsic layer.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: October 17, 2006
    Assignee: Midwest Research Institute
    Inventors: Qi Wang, Eugene Iwaniczko
  • Patent number: 7122735
    Abstract: A method and apparatus that converts energy provided by a chemical reaction into energy for charging a quantum well device. The disclosed apparatus comprises a catalyst layer that catalyzes a chemical reaction and captures hot electrons and hot phonons generated by the chemical reaction, and an interface layer placed between the catalyst layer and a quantum well. The interface layer facilitates the transfer of hot electrons and hot phonons from the catalyst layer into the quantum well layer. The interface layer can also convert hot electrons into hot phonons, and vice versa, depending upon the needs of the particular quantum well device. Because the hot electrons and the hot phonons are unstable and readily degrade into heat energy, the dimensions of the catalyst layer and the interface layer are very small. To improve the efficiency of the transfer of hot electrons and hot phonons to the quantum well, other interface layers, such as a catalyst interlayer and a catalyst interface, may be utilized.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: October 17, 2006
    Assignee: Neokismet, L.L.C.
    Inventors: Anthony C. Zuppero, Jawahar M. Gidwani
  • Patent number: 7122734
    Abstract: A method of reducing propagation of threading dislocations into active areas of an optoelectronic device having a III–V material system includes growing a metamorphic buffer region in the presence of an isoelectronic surfactant. A first buffer layer may be lattice matched to an adjacent substrate and a second buffer layer may be lattice matched to device layers disposed upon the second buffer layer. Moreover, multiple metamorphic buffer layers fabricated in this manner may be used in a single given device allowing multiple layers to have their band gaps and lattice constants independently selected from those of the rest of the device.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: October 17, 2006
    Assignee: The Boeing Company
    Inventors: Christopher M. Fetzer, James H. Ermer, Richard R. King, Peter C. Cotler
  • Patent number: 7122733
    Abstract: The present invention provides a solar cell comprising a substrate, a first buffer layer disposed above the base layer, a second buffer layer disposed above the first buffer layer, a first boron compound layer disposed above the second buffer layer, a second boron compound layer disposed above the first compound layer, and a window layer disposed above the second compound layer, wherein the first compound layer comprises a first type of doping, wherein the second compound layer comprises a second type of doping, wherein the second buffer layer comprises a higher energy bandgap than the first compound layer, and wherein the first buffer layer and the second buffer layer permit a boron content in the first compound layer and the second compound layer to be greater than 3 %.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: October 17, 2006
    Assignee: The Boeing Company
    Inventors: Authi A. Narayanan, Joel A. Schwartz
  • Patent number: 7119272
    Abstract: An apparatus and method for extracting energy is provided. In one aspect the method includes using chemical reactions to generate vibrationally excited molecules, such as high-quantum-number-vibrationally-excited gas molecules in a region. The vibration energy in the vibrationally excited molecules is converted into hot electrons when the excited molecules contact a conductor. A geometry is provided so that the excited molecules may travel, diffuse or wander into a conductor before loosing a useful fraction of the vibrational energy. Optionally, the generating and the converting process may be thermally separated, at least in part. The short lived hot electrons are converted into longer lived entities such as carriers and potentials in a semiconductor, where the energy is converted into a useful form.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: October 10, 2006
    Assignee: Neokismet, L.L.C.
    Inventors: Anthony C. Zuppero, Jawahar M. Gidwani
  • Patent number: 7118662
    Abstract: The windows 5a, 5b are configured so that the thickness of the upper and lower parts of the substrate formed therein with the channels becomes thinner in these parts than in other parts. An air space is defined in the vicinity of the one side wall of the channel within a part where the first outgoing window 5a is formed, so as to serve as a window, and the second outgoing window 5b has a shape such as to be recessed inward from the one side wall of the planar plate 10, in comparison with the other part thereof. Further, the fluorescence transmission path 6b is also formed on opposite sides with air spaces. It is noted that a rod-like fiber or the like may be embedded in the planar plate 10 on the outgoing side of the planar plate 10 at the time of forming the separation channel 21 and the like.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: October 10, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hironobu Yamakawa, Ryo Miyake, Yasuhiko Sasaki, Akira Koide
  • Patent number: 7115811
    Abstract: The present invention is directed to systems and methods for protecting a solar cell. The solar cell includes first solar cell portion. The first solar cell portion includes at least one junction and at least one solar cell contact on a backside of the first solar cell portion. At least one bypass diode portion is epitaxially grown on the first solar cell portion. The bypass diode has at least one contact. An interconnect couples the solar cell contact to the diode contact.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: October 3, 2006
    Assignee: EMCORE Corporation
    Inventors: Frank Ho, Milton Y. Yeh, Chaw-Long Chu, Peter A. IIes
  • Patent number: 7109409
    Abstract: A magnetic field enhanced photovoltaic device includes a photoelectric conversion layer, a first electrode, a second electrode, a ferro-antiferromagnetic exchange coupling layer and an applied magnetic field. The first electrode and the second electrode are respectively disposed on two surfaces of the photoelectric conversion layer to collect electrons and holes generated by the photoelectric conversion layer. The first electrode is pervious to light. The incident light reaches the photoelectric conversion layer through the first electrode. The applied magnetic field polarizes the spin state of electrons. The ferro-antiferromagnetic exchange coupling layer adjoins the photoelectric conversion layer and pins the spin state of electrons.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: September 19, 2006
    Assignee: Industrial Technology Research Institute
    Inventor: Chia-Fan Chu
  • Patent number: 7108775
    Abstract: The present teachings provide a microfluidic apparatus comprising a body defining at least one channel that extends through said body, the channel including an inlet and an outlet; and an electrode positioned in proximity to the body and configured to provide an electrical field near the outlet of the channel to at least partially confine an eluted sample component passing from the channel. The present teachings also provide an electrophoresis system, comprising a microfluidic chip defining a plurality of channels passing therethrough, each of the channels having an inlet and an outlet; a first electrode in electrical communication with the inlet of each of the channels; a second electrode in electrical communication with the outlet of each of the channels; and a third electrode in electrical communication with the outlet of each of the channels, wherein the third electrode is positioned to provide an electrical field to at least partially confine an eluted sample component passing from any of the channels.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: September 19, 2006
    Assignee: Applera Corporation
    Inventors: Dar Bahatt, Reid Kowallis
  • Patent number: 7109408
    Abstract: A solid-state energy converter with a semiconductor or semiconductor-metal implementation is provided for conversion of thermal energy to electric energy, or electric energy to refrigeration. In n-type heat-to-electricity embodiments, a highly doped n* emitter region made of a metal or semiconductor injects carriers into an n-type gap region. A p-type layer is positioned between the emitter region and gap region, allowing for discontinuity of corresponding Fermi-levels and forming a potential barrier to sort electrons by energy. Additional p-type layers can optionally be formed on the collector side of the converter. One type of these layers with higher carrier concentration (p*) serves as a blocking layer at the cold side of the converter, and another layer (p**) with carrier concentration close to the gap reduces a thermoelectric back flow component. Ohmic contacts on both sides of the device close the electrical circuit through an external load to convert heat to electricity.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: September 19, 2006
    Assignee: Eneco, Inc.
    Inventors: Yan R. Kucherov, Peter L. Hagelstein
  • Patent number: 7105081
    Abstract: Methods and apparatus for preparing a smear for cytopathology or other analysis. In a representative embodiment, cells of a sample are subjected to a dielectrophoretic force to segregate the cells into two or more zones of a surface. The particles are attached to the surface, thereby defining a “segregated smear.” The segregated smear is then fixed and stained for cytopathology analysis.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: September 12, 2006
    Assignee: Board of Regents, The University of Texas System
    Inventors: Peter R. C. Gascoyne, Jody V. Vykoukal, Chandra Das, Frederick F. Becker
  • Patent number: 7098395
    Abstract: A thin-film solar cell module of a see-through structure has a plurality of integrated thin-film solar cell segments, each having a rectangular surface, provided on at least a portion of a surface region of a light-transmitting substrate having a rectangular surface and are spaced apart from each other. Adjacent solar cell segments are spaced apart at substantially regular intervals, with their long sides extending parallel to each other. Those portions of the substrate, which lie between the solar cell segments, are exposed, defining light-transmitting windows. A transparent sealing resin fills the gaps between the adjacent solar cell segments.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: August 29, 2006
    Assignee: Kaneka Corporation
    Inventors: Masafumi Hiraishi, Naoaki Nakanishi
  • Patent number: 7098393
    Abstract: A thermoelectric device formed of nanowires on the nm scale. The nanowires are preferably of a size that causes quantum confinement effects within the wires. The wires are connected together into a bundle to increase the power density.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: August 29, 2006
    Assignee: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Margaret A. Ryan, Alexander Borshchevsky, Jennifer Herman
  • Patent number: 7098394
    Abstract: A system and method for providing power to a light-powered transponder. In order to create a sufficient voltage differential, two different photovoltaic elements are used. The photovoltaic elements generate voltages of different polarities. Because the photovoltaic elements are used independently to generate voltages with different polarities, the present system can achieve a desired voltage differential despite the inherent difficulties presented by the use of a standard CMOS process.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: August 29, 2006
    Assignee: Pharmaseq, Inc.
    Inventors: John Armer, Thomas Richard Senko
  • Patent number: 7094441
    Abstract: A polymeric linking agent enables the manufacture of photovoltaic cells on flexible substrates, including, for example, polymeric substrates. Photovoltaic cells may be fabricated by a relatively simple continuous manufacturing process, for example, a roll-to-roll process, instead of a batch process.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: August 22, 2006
    Assignee: Konarka Technologies, Inc.
    Inventors: Kethinni G. Chittibabu, Russell Gaudiana, Bill Beckenbaugh, Lian Li, Michael Lee
  • Patent number: 7087833
    Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: August 8, 2006
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai Buretea, Stephen A. Empedocles
  • Patent number: 7087831
    Abstract: A photoelectric conversion device comprising at least an electron acceptive charge transfer layer, an electron donative charge transfer layer, and a light absorption layer existing between the charge transfer layers, wherein either one of the charge transfer layers comprises a semiconductor acicular crystal layer comprising an aggregate of acicular crystals or a mixture of an acicular crystal and another crystal, and a method of producing the device are disclosed. Consequently, a photoelectric conversion device being capable of smoothly carrying out transfer of electrons and having high photoelectric conversion efficiency is provided.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: August 8, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Den, Hiroshi Okura