Patents Examined by Alana Harris Dent
  • Patent number: 11975058
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: May 7, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11957742
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 24, 2023
    Date of Patent: April 16, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11951160
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: April 9, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11897935
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 13, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Anita Wiebe, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11897936
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: February 13, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Anita Wiebe, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11806391
    Abstract: Provided herein is technology relating to cancer treatment and prevention and particularly, but not exclusively, to compositions and methods related to therapies for prostate cancer.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: November 7, 2023
    Assignee: MADISON VACCINES INC.
    Inventors: Doug McNeel, Richard Lesniewski
  • Patent number: 11802874
    Abstract: The present invention corresponds to the field of cancer and is related to predicting cancer detection, diagnosis, monitoring and prediction of response to treatment, in particular platelet derived-endothelial cell growth factor (PD-ECGF) levels for their use as a potential value in monitoring disease evolution and predicting response to anti-angiogenic treatment.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: October 31, 2023
    Assignees: FUNDACIO INSTITUT D'INVESTIGACIÓ BIOMÈDICA DE BELLVITGE (IDIBELL), INSTITUT CATALÀ D'ONCOLOGIA (ICO)
    Inventors: Oriol Casanovas Casanovas, Gabriela Jiménez Valerio, María Ochoa De Olza, Valentí Navarro Pérez, Nicklas Bassani, Helena Verdaguer
  • Patent number: 11793856
    Abstract: This disclosure provides peptides which have a strong affinity for the checkpoint receptor “programmed death 1” (PD-1). These peptides block the interaction of PD-1 with its ligand PD-L1 and can therefore be used for various therapeutic purposes, such as inhibiting the progression of a hyperproliferative disorder, including cancer; treating infectious diseases; enhancing a response to vaccination; treating sepsis; and promoting hair re-pigmentation or lightening of pigmented skin lesions.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: October 24, 2023
    Assignee: Leidos, Inc.
    Inventors: Gabriel M. Gutierrez, Vinayaka Kotraiah, James Pannucci, Ramses Ayala
  • Patent number: 11793866
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: October 24, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11789012
    Abstract: The invention relates to cell death of cancer cells, and in particular to biomarkers that may be used to identify cancer cells that are sensitive to death receptor ligand (DRL)-induced cell death. The invention also extends to prognostic methods and kits for identifying cancer cells that are sensitive to DRL-induced cell death. The invention further extends to novel compositions and therapeutic methods using such compositions for treating cancer.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 17, 2023
    Assignee: UCL Business Ltd
    Inventors: Samuel Janes, Krishna Kolluri, Ultan McDermott, Neelam Kumar
  • Patent number: 11779631
    Abstract: CD47+ disease cells such as cancer cells are treated using a combination of CD47 blockade drug and a histone deacetylase (HDAC) inhibitor. The anti-cancer effect of one drug enhances the anti-cancer effect of the other. Specific combinations include SIRP?Fc as CD47 blockade drug, and one of depsipeptide and romidepsin as HDAC inhibitor. These combinations are useful particularly to treat blood cancers including lymphomas, leukemias and myelomas.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: October 10, 2023
    Assignee: Pfizer Inc.
    Inventors: Emma Linderoth, Natasja Nielsen Viller, Robert Adam Uger, Penka Slavcheva Slavova-Petrova
  • Patent number: 11744882
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: September 5, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11714089
    Abstract: A method of diagnosing a cancer or a pre-malignant lesion is disclosed. The method comprising determining a level of expression of CD24 on leukocytes comprised in a biological sample of a subject, wherein a level of CD24 on small leukocytes and not on large leukocytes above a predetermined threshold is indicative of the cancer or the pre-malignant lesion. A method of monitoring efficacy of cancer therapy and a kit for diagnosing a cancer or a pre-malignant lesion are also disclosed.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: August 1, 2023
    Assignee: The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center
    Inventors: Nadir Arber, Shiran Shapira, Diana Kazanov
  • Patent number: 11702483
    Abstract: The present application discloses anti-NME antibodies and their use in treating or preventing diseases.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: July 18, 2023
    Assignee: MINERVA BIOTECHNOLOGIES CORPORATION
    Inventors: Cynthia Bamdad, Benoit Smagghe
  • Patent number: 11693007
    Abstract: Provided herein are methods of detecting pancreatic cancer, particularly early stage pancreatic cancer, comprising measuring the expression of the biomarker panel TNC-FN III-C, TFPI, and CA19-9. The expression may be determined by an ELISA, such as a multiplex ELISA. Further provided herein are methods of treating subjects identified to have pancreatic cancer.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: July 4, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Ann McNeill Killary, Steven T. Lott, Nanyue Chen, Seetharaman Balasenthil
  • Patent number: 11666565
    Abstract: The present invention resides in the discovery that Smad3, a key downstream mediator of TGF-? signaling, plays a critical role in development and progression of cancer. Thus, this application provides for a novel method of treating cancer by inhibiting Smad3 signaling, such as through administration of SIS3, an inhibitor of Smad3. Further provided are compositions and kits useful for treating cancer by way of inhibiting Smad3 signaling.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: June 6, 2023
    Assignee: The Chinese Universitv of Hong Kong
    Inventor: Hui Yao Lan
  • Patent number: 11650206
    Abstract: Heritable mutations in the BRCA1 and BRCA2 and other genes in the DNA double-strand break (DSB) repair pathway increase risk of breast, ovarian and other cancers. In response to DNA breaks, the proteins encoded by these genes bind to each other and are transported into the nucleus to form nuclear foci and initiate homologous recombination. Flow cytometry-based functional variant analyses (FVAs) were developed to determine whether variants in BRCA1 or other DSB repair genes disrupted the binding of BRCA1 to its protein partners, the phosphorylation of p53 or the transport of the BRCA1 complex to the nucleus in response to DNA damage. Each of these assays distinguished high-risk BRCA1 mutations from low-risk BRCA1 controls. Mutations in other DSB repair pathway genes produced molecular phenocopies with these assays. FVA assays may represent an adjunct to sequencing for categorizing VUS or may represent a stand-alone measure for assessing breast cancer risk.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: May 16, 2023
    Assignee: Albert Einstein College of Medicine
    Inventors: Harry Ostrer, Johnny C. Loke, Alexander Pearlman
  • Patent number: 11612653
    Abstract: Provided is a novel cancer treatment method with less side effects, showing remarkably excellent antitumor effect. An antitumor agent is used for administering a DNA function inhibitor and an immunomodulator in combination.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: March 28, 2023
    Assignee: TAIHO PHARMACEUTICAL CO., LTD.
    Inventor: Norihiko Suzuki
  • Patent number: 11590196
    Abstract: Disclosed herein are polypeptides and fusion polypeptides that have anti-angiogenic activity that can be used to inhibit tumor growth and tumor metastasis. The polypeptide consists of 9 or less consecutive amino acid residues (e.g., 8, 7, 6, 5, or 4) comprising the active core amino acid sequence DWLP, or an amino acid substitution variant thereof. Specific amino acid substitutions are disclosed herein. In some embodiments, the peptide consists essentially of 4-6 mers identified as exhibiting the activity of prosaposin A. Also disclosed herein are therapeutic compositions comprising the polypeptides and fusion polypeptides, and their use in the treatment, prevention, and inhibition of angiogenesis-related diseases and disorders such as cancer and cancer metastasis.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: February 28, 2023
    Assignee: Children's Medical Center Corporation
    Inventor: Randolph S. Watnick
  • Patent number: 11576954
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: February 14, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh