Patents Examined by Alana Harris Dent
  • Patent number: 10280205
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 7, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Helen Hoerzer, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10273281
    Abstract: This application relates to CD80 (B7-1) extracellular domain (ECD) polypeptides and CD80-ECD fusion molecules and their use in treatment of cancer, both alone and in combination with other therapeutic agents, such as immune stimulating agents such as PD-1/PD-L1 inhibitors.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: April 30, 2019
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Thomas Brennan, David Bellovin, David Busha, Barbara Sennino
  • Patent number: 10259852
    Abstract: The P21 protein is used as a medicament in the treatment of cancer, conjugate comprises a first region comprising the P21 protein, or a homolog functional fragment thereof; and a second region comprising a translocation factor.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: April 16, 2019
    Assignee: Anastasis Biotec Limited
    Inventors: Agamemnon Epenetos, Christina Kousparou
  • Patent number: 10253076
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 9, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Helen Hoerzer, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10239931
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: March 26, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Anita Wiebe, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10227388
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 12, 2019
    Assignee: Immatics Biotechnologies GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Helen Hoerzer, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10196435
    Abstract: Provided is an isolated recombinant polypeptide comprising an immunoglobulin domain and a canine OX40L extracellular domain polypeptide fragment or a biological equivalent thereof and compositions comprising: an isolated recombinant polypeptide comprising an immunoglobulin domain and a canine OX40L extracellular domain polypeptide fragment; and a pharmaceutically acceptable carrier. Also provided are methods for treating or ameliorating the symptoms of cancer in a canine comprising administering an effective amount of the isolated recombinant polypeptide of the disclosure and/or a composition of the disclosure to a canine in need thereof.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: February 5, 2019
    Assignee: University of Southern California
    Inventors: Alan L. Epstein, Peisheng Hu
  • Patent number: 10197572
    Abstract: The present invention relates to a method and a kit and antibodies utilized therein, allowing to distinguish between leukemia cells resistant to and leukemia cells susceptible to differentiation induced by deltanoids.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: February 5, 2019
    Assignee: WROCLAWSKIE CENTRUM BADAN EIT+ SP. Z O.O.
    Inventors: Ewa Marcinkowska, Aleksandra Marchwicka, Filip Radom, Marta Matusiewicz, Piotr Jakimowicz, Filip Jelen, Maciej Mazurek
  • Patent number: 10184942
    Abstract: The invention pertains to biomarkers for clinical detection of malignancies, especially for early detection of cancers. More specifically, this invention pertains to the role of Natriuretic Peptide Receptor A (NPRA) in cancer (e.g., tumor) progression. Thus, the invention includes materials and methods for the detection and prognosis of malignancies. The invention also pertains to methods for treating malignancies.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 22, 2019
    Assignee: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Subhra Mohapatra, Shyam Mohapatra
  • Patent number: 10179935
    Abstract: Early detection of tumors is a major determinant of survival of patients suffering from tumors, including gastric tumors. Members of the GTM gene family can be over-expressed in gastric tumor tissue and other tumor tissue, and thus can be used as markers for gastric and other types of cancer. GTM proteins can be released from cancer cells, and can reach sufficiently high concentrations in the serum and/or other fluids to permit their detection. Thus, methods and test kits for detection and quantification of GTM can provide a valuable tool for diagnosis of gastric cancer.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: January 15, 2019
    Assignee: PACIFIC EDGE LIMITED
    Inventors: Parry John Guilford, Andrew John Holyoake
  • Patent number: 10172925
    Abstract: The object aims to provide: a novel tumor antigen; a novel therapeutic agent useful in a method for treating a malignant neoplasm by utilizing the tumor antigen; and a tumor antigen which can be used as the therapeutic agent. Thus, disclosed are: a novel tumor antigen which has an epitope capable of inducing a Th1 cell which is a CD4-positive T cell specific to Survivin; and use of the tumor antigen. Specifically disclosed is a polypeptide which comprises an amino acid sequence depicted in SEQ ID NO:17 or the like and has an activity to cause the production of a cytokine by a Th cell that is a cell specific to Survivin. The peptide can induce a Th cell that is specific to Survivin and can cause the production of a cytokine by the Sur/Th cell when the peptide is incubated together with an antigen-presenting cell and a CD4-positive T cell.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: January 8, 2019
    Assignee: Tella, Inc.
    Inventor: Takashi Nishimura
  • Patent number: 10159726
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: December 25, 2018
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10150801
    Abstract: The present disclosure provides recombinant polypeptides, nucleic acids encoding the recombinant polypeptides and methods for using these polypeptides and/or nucleic acids in enhancing or inducing an immune response in a subject in need thereof. The present disclosure also provides methods of treating a cell proliferative disorder, such as cancer, by administering the disclosed polypeptides and/or nucleic acids to a subject in need thereof.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 11, 2018
    Assignee: Imunami Laboratories Pte. Ltd.
    Inventors: Ya-Huei Chen, Ting-Long Lin
  • Patent number: 10107817
    Abstract: The present disclosure relates to an oligopeptide which is highly specific to an ovarian cancer. The oligopeptide includes an amino acid sequence of SEQ ID NO: 1. The present disclosure also relates to a test kit including the oligopeptide for detecting ovarian cancer and an ovarian cancer detection method by using the oligopeptide.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: October 23, 2018
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Gwo-Bin Lee, Lien-Yu Hung, Chih-Hung Wang, Chien-Yu Fu, Wen-Bin Lee
  • Patent number: 10098950
    Abstract: This disclosure provides peptides which have a strong affinity for the checkpoint receptor “programmed death 1” (PD-1). These peptides block the interaction of PD-1 with its ligand PD-L1 and can therefore be used for various therapeutic purposes, such as inhibiting the progression of a hyperproliferative disorder, including cancer, treating infectious diseases, enhancing a response to vaccination, and treating sepsis.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 16, 2018
    Assignee: Leidos, Inc.
    Inventors: Gabriel M. Gutierrez, Vinayaka Kotraiah, James Pannucci, Ramses Ayala
  • Patent number: 10077296
    Abstract: The instant invention provides compositions for the treatment of cancer. Specifically, the invention provides polypeptides and nucleic acid molecules comprising tumor-associated embryonic antigens, e.g., OFA-iLRP, and chemoattractant ligands, e.g., a proinflammatory chemokine such as MIP3?/CCL20 or ?-defensin mDF2?. The invention further provides cancer vaccines and methods for treating subjects having, or at risk of developing, cancer.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: September 18, 2018
    Assignee: The United States of America, as represented by the Secretary, Department of Health & Human Services
    Inventors: Bira Arya, Dan Longo, Igor Espinoza-Delgardo
  • Patent number: 10058598
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 28, 2018
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10035838
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: July 31, 2018
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Annika Sonntag, Toni Weinschenk, Andrea Mahr, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10035981
    Abstract: This invention provides an anti-cancer immunogenic agent(s) (e.g. vaccines) that elicit an immune response specifically directed against renal cell cancers expressing a G250 antigenic marker. Preferred immunogenic agents comprise a chimeric molecule comprising a kidney cancer specific antigen (G250) attached to a granulocyte-macrophage colony stimulating factor (GM-CSF). The agents are useful in a wide variety of treatment modalities including, but not limited to protein vaccination, DNA vaccination, and adoptive immunotherapy.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 31, 2018
    Assignee: The Regents of the University of California
    Inventors: Arie Belldegrun, Cho-Lea Tso
  • Patent number: 10023855
    Abstract: A fusion protein including N-terminal domain of a fusion partner at N-terminal and C-terminal domain of RET protein at C-terminal, a fusion gene encoding the fusion protein, and a use of the fusion protein or the fusion gene as a diagnosing marker for a cancer, are provided.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 17, 2018
    Assignees: Macrogen, Inc., Macrogen Corp.
    Inventors: Young-Seok Ju, Jeong-Sun Seo, Eun-Hee Kim