Patents Examined by Alandra Ellington
  • Patent number: 6782755
    Abstract: A surface-micromachined high-pressure sensor, formed by forming a cavity using a sacrificial layer. The sacrificial layer can be reflowed to make the edges of the cavity more rounded. The material that is used for the diaphragm can be silicon nitride, or multiple layers including silicon nitride and other materials. The pressure sensor is intended to be used in high pressure applications, e.g. pressure is higher than 6000, 10,000 or 30,000 P.S.I.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: August 31, 2004
    Assignees: California Institute of Technology, Schlumberger Technology Corporation
    Inventors: Yu-Chong Tai, Yong Xu, Fukang Jiang
  • Patent number: 6779399
    Abstract: A sprinkler measuring cup device is provided for use in evaluating sprinkler performance. The device is of a one-piece construction and allows measurement of depth of water applied. The measuring device is shaped to allow a plurality of devices to be staked one on top of the other. The device includes a central cup and peripheral ground piercing legs.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: August 24, 2004
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Fredrick S. Liljegren, Michael D. Stuver
  • Patent number: 6772647
    Abstract: The present invention is based on an use of the already existing actuator bottom as a deformation element for a direct measurement of braking force, and on its geometric configuration in order to measure a force in a way which is largely independent of temperature and free of hysteresis. Accordingly, a force sensor is integrated into an actuator for generally or transmitting a force in the force flux. The actuator bottom is transverse to the force flux.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: August 10, 2004
    Assignee: Pacifica Group Technologies Pty Ltd.
    Inventors: Guenter Doemens, Dieter Spriegel, Hans Wuensche
  • Patent number: 6766697
    Abstract: A hydrodynamic bearing includes a fiber optic sensor for measuring static and dynamic bearing forces or loads during operation. The fiber optic sensor is positioned within the bearing through the most direct load path, which is through the pad support for a tilting pad style bearing. In additional to being positioned in the pad support of a tilting pad bearing, the sensor is also placed 1) inside the pad support or on the pad support structure, and 2) oriented perpendicularly with the shaft centerlines. After the sensor location is chosen and the sensor is properly positioned, a calibration procedure is utilized to determine the relationship between the radial load and measured strain for the specific bearing. Once the calibration factor has been determined, the sensor may be utilized in the bearing to measure load during operation.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: July 27, 2004
    Assignee: Bearings Plus, Inc.
    Inventors: Robert X. Perez, Natividad S. Ibanez
  • Patent number: 6763733
    Abstract: A target plate 3 is provided onto a shaft 1 and is has targets 3a arranged on an outer circumference. Facing the outer circumference of this target plate 3 is a sensor 5 that is provided with MR elements, which are arranged in a circumferential direction in accordance with an arrangement interval of the targets 3a. A rotational angle of the target plate 3 is calculated based on an output obtained between the MR elements in accordance with the displacement in the circumferential direction of the targets 3a, 3a with the rotation of the target plate 3.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: July 20, 2004
    Assignee: Koyo Seiko Co., Ltd.
    Inventor: Yoshitomo Tokumoto
  • Patent number: 6763726
    Abstract: A mechanical-force sensor includes two piezoelectric vibrators which are arranged such that stresses in mutually opposite directions are applied thereto by a mechanical force such as an acceleration. A current-voltage converter and signal-summing circuit converts current signals that flow through the two piezoelectric vibrators into voltage signals. A voltage-amplifier and amplitude limiter circuit amplifies a sum signal of the two voltage signals, and provides a positive feedback of a voltage signal that is in phase with the current signals, thereby causing an oscillating operation. A phase difference-voltage converter circuit generates a voltage signal that is proportional to the phase difference between the voltage signals yielded by the conversion. An amplifier and filter circuit DC-amplifies the voltage signal and removes unwanted frequency components therefrom.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: July 20, 2004
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Muneharu Yamashita
  • Patent number: 6758098
    Abstract: A precision clamp accurately measures force over a wide range of conditions. Using a full bridge or other strain gage configuration, the elastic deformation of the clamp is measured or detected by the strain gages. The strain gages transmit a signal that corresponds to the degree of stress upon the clamp. The strain gage signal is converted to a numeric display. Calibration is achieved by zero and span potentiometers which enable accurate measurements by the force-measuring clamp.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: July 6, 2004
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Mark Nunnelee
  • Patent number: 6758091
    Abstract: An apparatus and a method for local measurement of an icing factor for atmospheric air containing supercooled water, and wherein the apparatus comprises at least one surface element made of a material suitable for ice in atmospheric air to freeze on, and said surface element having a predetermined surface area, and wherein the apparats further comprises means that are configured for moving the surface element through the atmospheric air at a predetermined rate and for a predetermined period of time, and wherein means am also provided that are configured for measuring the thickness or mass of the ice frozen fast onto the surface element after the predetermined time interval during which the element is moved through the atmospheric air.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: July 6, 2004
    Assignee: Dalsgaard Nielsen ApS
    Inventor: Evan Nielsen
  • Patent number: 6748801
    Abstract: A sheet separation and feeding system for measuring substrate bending stiffness and thereby basis weight on a real time basis. Provided is a corrugator having a plurality of parallel ribs, with one or more sheets of the substrate provided below the corrugator wherein a predetermined gap exists between a topmost sheet of the sheets and the corrugator. A vacuum is applied between the corrugator and the topmost sheet, wherein the vacuum is sufficiently large to raise the topmost sheet, thereby deflecting and bending it into a profile corresponding to the arrangement and size of the corrugator ribs and bending stiffness of the substrate. One or more sensors are provided for measuring the deflection of the topmost sheet. The vacuum, an air knife output and/or a fluffer output are then adjusted according to predetermined rules and the measured deflection.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: June 15, 2004
    Assignee: Xerox Corporation
    Inventor: Robert A. Clark
  • Patent number: 6748814
    Abstract: A load detection structure for seat having support leg member, which comprises: a load detection unit whose one end portion is pivotally provided in the support leg member; a limiter element for limiting vertical movement of another end portion of the load detection unit; and a stopper element for limiting further excessive vertical movement of such another end portion. The load detection unit is connected via bolts and nuts with the seat and includes: a strain plate member; a reinforcement plate member attached on a securing portion of the strain plate member through which the bolts and nuts pass; and a buffer cover member which is attached to a free end of the strain plate member, defining the afore-said another end portion of the load detection unit. A strain gauge is provided at a deflectable area of the strain plate member. The stopper element is provided at the bolt.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: June 15, 2004
    Assignee: Tachi-S Co., Ltd.
    Inventors: Toshiaki Ishida, Hiromitsu Ogasawara
  • Patent number: 6742381
    Abstract: A damping performance evaluation apparatus for damping devices including: a support member detachably supporting a damping device in a state enabling the device to exhibit a damping effect thereof; a hammer member for applying oscillation force to the device caused by gravitational descent to strike the device; a double-strike preventing member for preventing the hammer member from dropping a second time due to rebound after initially striking the device, to prevent double-strike of the device by the hammer member; a vibration sensor installed at a vibration zone caused to vibrate through oscillation force applied by said hammer member, for outputting an electrical signal in response to vibration at the vibration zone; and a sensing member for sensing a vibration mode in the vibration zone on the basis of an output of said vibration sensor. A damping performance evaluation method is also disclosed.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: June 1, 2004
    Assignee: Tokai Rubber Industries, Ltd.
    Inventor: Hajime Maeno
  • Patent number: 6739198
    Abstract: A pressure sensitive sensor is provided that includes a net braid member formed by knitting a plurality of insulating yarn strands, such as an aramid fiber, interposed between an elastic electroconductive tube and a central electrode member. The elastic electroconductive tube and the central electrode member are brought into electrical contact with each other through the gap portion of the mesh of the net braid member at a pressure point, and pressure is detected. The central electrode member is formed by winding an electroconductive metal wire in a coil on the outer peripheral surface of a central member formed by coating an elastic insulating material on a central reinforcing member formed of an aramid fiber. Thus, a pressure sensitive sensor which has a simple construction, can be produced easily and at low cost, is suitable for making a small sensor, and can appropriately function even if the sensor is warped or kinked at a sharp curvature.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: May 25, 2004
    Assignee: Sumitomo Wiring Systems, Ltd.
    Inventors: Shigeru Suzuki, Mohachi Mizuguchi, Yoshinao Kobayashi, Hiroshi Inoue
  • Patent number: 6736015
    Abstract: Micro electromechanical components in a novel configuration to allow wireless normal direction pressure transducers to be used for oblique or shear forces. The invention includes a novel cantilever beam configuration and algorithm, the readings of the MEMS sensors are averaged to reduce the experimental variability, to estimate the shear stress that may occur between a human and external equipment or possibly between materials. The shear force component is calculated via the formula: Shear Force=Vt={square root over ({overscore (V)})}23+4+ . . . +n1−{overscore (V)}21+2+ . . . +n2.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: May 18, 2004
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Daniel W. Repperger, David B. Reynolds, James Berlin
  • Patent number: 6736014
    Abstract: For the metal substrate of a strain sensor, a Mo-containing two-phase stainless steel SUS329 is used. When an insulating layer, electrodes and a resistor are formed on the metal substrate by baking their materials, the alpha phase in the stainless steel of the metal substrate changes to a sigma phase through the baking heat, and, as a result, the range of strain applicable to the sensor within the elastic region of the substrate is broadened and the residual strain of the substrate is reduced. The strain sensor has a broad strain-detectable range and is readily restored to its starting point.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: May 18, 2004
    Assignee: Alps Electric Co., Ltd
    Inventor: Kunio Shinbo
  • Patent number: 6732593
    Abstract: An attachment structure installs a load sensor between a seating portion of a vehicle seat and a vehicle body through an attachment structure unit. The attachment structure unit includes a first attachment bracket for holding one end of the strain unit, and a second attachment bracket for holding the other end of the strain unit. At least a pair of attachment structure units are arranged at right and left portions of a front side, right and left portions of a back side, or right and left portions of the front and back sides of the seating portion relative to the vehicle seat and the first attachment brackets of the attachment structure units of the right and left are connected to each other through a connecting rod.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: May 11, 2004
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Kazunori Sakamoto, Morio Sakai, Tsutomu Takeuchi, Yasunori Hasegawa, Kentaro Morishita, Osamu Fujimoto
  • Patent number: 6729190
    Abstract: Methods and apparatus for testing the strength of ceramic honeycomb structures are described. The apparatus includes a chamber that utilizes a flexible, generally cylindrical member including integral flanges to apply compressive force to the periphery of the honeycomb structure. According to some embodiments, a portable apparatus with an open chamber is provided to allow for rapid testing of multiple honeycomb structures.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: May 4, 2004
    Assignee: Corning Incorporated
    Inventors: Ronald A. Boyko, Cory F. Guenter, James F. King, Jr., James E. Lyons, Chester P. Tuttle, Jr.
  • Patent number: 6729187
    Abstract: A self-compensated strain gage sensor having a temperature co-efficient of resistance (TCR) of essentially zero comprised of a wide band semiconductor and a compensating metal functioning as serial resistors. Based on the resistivity of the semiconductor and the metal and the temperature range in which the sensor will operate the dimensions of the semiconductor and the metal are determined to provide a zero TCR.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: May 4, 2004
    Assignee: The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventor: Otto J. Gregory
  • Patent number: 6725734
    Abstract: A rotation sensor functioning as both a rotation-angle sensor and a torque sensor is provided which, when applied to a steering sensor for an automobile, for example, permits reduction in the number of components and thus in the weight of the automobile and contributes to conservation of global environment. The rotation sensor has slip rings covered with conductive synthetic resin having small coefficient of friction, allowing the contact pressure of brushes disposed in sliding contact with the slip rings to be kept low and the life duration of the slip rings to be prolonged. Further, no metal powder is produced when the brushes slide on the respective slip rings, and it is therefore possible to prevent the formation of unwanted insulating film.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: April 27, 2004
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Tomoaki Toratani, Toshiro Yamamoto, Hiroshi Morimoto, Kyutaro Abe, Masahiro Hasegawa, Akira Noguchi, Kosuke Yamawaki
  • Patent number: 6722212
    Abstract: A device for measuring tensile stress acting on a vehicle seat belt has two components. A first component is connected with a seat belt and a second component is fixed to a vehicle part a spring arranged between the two components, against whose force the two components may be moved relative to one another. A transducer has transducer elements that are attached to the two components and produces an electrical signal as a function of the positions of the two components relative to one another. The transducer produces a switching signal when the components are in a first positional zone. In a second positional zone, in which the two components may be moved relative to one another against the force of the spring, the transducer produces measuring signals proportional to the movement of the two components relative to one another.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: April 20, 2004
    Assignee: Breed Automotive Technology, Inc.
    Inventor: Martin Specht
  • Patent number: 6722191
    Abstract: A monitoring assembly for a pneumatic tire is designed to be loosely disposed within the tire and rim combination. The monitoring assembly includes a protective body that surrounds a monitoring device. The protective body at least includes a rigid encapsulation material and may include a cushion layer disposed outside the rigid encapsulation layer. One embodiment of the invention provides channels disposed through the protective body to speed the temperature response of the monitoring assembly.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: April 20, 2004
    Assignee: Bridgestone/Firestone North American Tire, LLC
    Inventors: Russell W. Koch, Paul B. Wilson, Jack Dutcher, Guy J. Walenga, John D. Rensel