Patents Examined by Alex Noguerola
  • Patent number: 8486243
    Abstract: The present invention relates to electrochemical cells including a first working electrode 32, a first counter electrode 34, a second working electrode 36, and a second counter electrode 38, wherein the electrodes are spaced such that reaction products from the first counter electrode 34 arrive at the first working electrode 32, and reaction products from the first and second counter electrodes 34, 38 do not reach the second working electrode 36. Also provided is a method of using such electrochemical cells for determining the concentration of a reduced or oxidized form of a redox species with greater accuracy than can be obtained using an electrochemical cell having a single working and counter electrode.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: July 16, 2013
    Assignee: LifeScan, Inc.
    Inventor: Alastair M. Hodges
  • Patent number: 8486245
    Abstract: Electrochemical measurement techniques for measuring the concentration of an analyte in a physiological fluid sample are described. More particularly, the present invention relates to techniques for distinguishing a signal caused by an extraneous event from a desired information providing signal such as one indicative of a measurement error.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: July 16, 2013
    Inventors: Neil Roberts, Gary Smeaton
  • Patent number: 8480867
    Abstract: Apparatus are disclosed for measuring substrate content present in a specimen that is applied to a biosensor, where the apparatus include an input for receiving an electrical signal from the biosensor; and a circuit coupled to the input to detect the electrical signal to determine whether an amount of the specimen needed for specimen detection has been supplied to the biosensor; where the apparatus measures the substrate content included in the specimen when the circuit determines that an amount of the specimen needed for specimen detection has been supplied to the biosensor, and the apparatus is prevented from measuring the substrate content included in the specimen when the circuit determines that the specimen has not been sufficiently supplied to the biosensor.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Masaki Fujiwara, Yoshinobu Tokuno
  • Patent number: 8480866
    Abstract: A biosensor is disclosed comprising a support; a conductive layer composed of an electrical conductive material such as a noble metal, for example gold or palladium, and carbon; slits parallel to and perpendicular to the side of the support; working, counter, and detecting electrodes; a spacer which covers the working, counter, and detecting electrodes on the support; a rectangular cutout in the spacer forming a specimen supply path; an inlet to the specimen supply path; a reagent layer formed by applying a reagent containing an enzyme to the working, counter, and detecting electrodes, which are exposed through the cutout in the spacer; and a cover over the spacer. The biosensor can be formed by a simple method, and provides a uniform reagent layer on the electrodes regardless of the reagent composition.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: July 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Eriko Yamanishi
  • Patent number: 8480871
    Abstract: Methods and apparatus for moving and concentrating particles apply an alternating driving field and an alternating field that alters mobility of the particles. The driving field and mobility-varying field are correlated with one another. The methods and apparatus may be used to concentrate DNA or RNA in a medium, for example. Methods and apparatus for extracting particles from one medium into another involve applying an alternating driving field that causes net drift of the particles from the first medium into the second medium but no net drift of the particles in the second medium.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 9, 2013
    Assignee: The University of British Columbia
    Inventors: Andrea Marziali, Lorne Whitehead
  • Patent number: 8480878
    Abstract: A biosensor is disclosed comprising a support; a conductive layer composed of an electrical conductive material such as a noble metal, for example gold or palladium, and carbon; slits parallel to and perpendicular to the side of the support; working, counter, and detecting electrodes; a spacer which covers the working, counter, and detecting electrodes on the support; a rectangular cutout in the spacer forming a specimen supply path; an inlet to the specimen supply path; a reagent layer formed by applying a reagent containing an enzyme to the working, counter, and detecting electrodes, which are exposed through the cutout in the spacer; and a cover over the spacer. The biosensor can be formed by a simple method, and provides a uniform reagent layer on the electrodes regardless of the reagent composition.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: July 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi
  • Patent number: 8475646
    Abstract: Methods are disclosed for measuring substrate content in a specimen using a biosensor that includes two pairs of electrodes in a specimen supply path, where the methods include the steps of: (a) a first detecting step for detecting an electrical change in the first pair of electrodes; (b) a second detecting step for detecting an electrical change in the second pair of electrodes after the first detecting step; (c) a judging step for judging a shortage of specimen amount that is needed for measurement, when an electrical change is not detected in the second detecting step within a prescribed period of time after the first detecting step; (d) an indicating step for indicating a shortage of the specimen amount; and (e) a stopping step for stopping measurement of substrate content in the specimen once the shortage of specimen amount is indicated in the indicating step.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 2, 2013
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Masaki Fujiwara, Yoshinobu Tokuno
  • Patent number: 8475640
    Abstract: The present invention provides a simple method to correct cross-talk, after the data have been generated. Adjacent signals are simply subtracted from the original observed signal with a repeating process. The data processing is stopped when a predefined condition is met. By this technique, cross-talk can be reduced from >5% to less than 0.1%. And as an additional advantage, this method provides a way to correct the cross-talk without the need to know which peaks are caused by the adjacent capillary signal.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: July 2, 2013
    Assignee: Advanced Analytical Technologies, Inc.
    Inventor: Ho-Ming Pang
  • Patent number: 8475642
    Abstract: Methods and systems for monitoring electrolyte bath fluids are provided. The electrolyte bath fluids can be electroplating, electroless plating or etching solutions. The monitoring systems employ microfluidic devices, which have built in microfluidic channels and microfabricated thin-film electrodes. The devices are configured with fluid pumps to control the movement and mixing of test fluids through the microfluidic channels. The microfabricated thin-film electrodes are configured so that the plating or etching bath fluid composition can be characterized by electrochemical measurements. The monitoring methods and system provide faster measurement times, generate minimal waste, and occupy dramatically reduced physical space compared to conventional bath-monitor systems. The monitoring systems and method also provide low-cost system and methods for measuring or monitoring electroless plating bath rates.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: July 2, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Alan C. West, Mark J. Willey, Robert J. von Gutfeld
  • Patent number: 8470162
    Abstract: Quantifying devices and methods are disclosed for quantifying substrate content using a biosensor where the methods include a first detecting step for detecting an electrical change generated between a measuring electrode and a counter electrode of a biosensor by applying a sample liquid to the biosensor; a second detecting step for detecting an electrical change generated between a detecting electrode of the biosensor and the counter electrode or the measuring electrode by applying the sample liquid to the biosensor; and a notification step for informing a user when the second detecting step does not occur within a predetermined period after the first detecting step.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: June 25, 2013
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Masaki Fujiwara, Yoshinobu Tokuno
  • Patent number: 8470149
    Abstract: A method for dispensing liquid for use in biological analysis may comprise positioning liquid to be dispensed via electrowetting. The positioning may comprise aligning the liquid with a plurality of predetermined locations. The method may further comprise dispensing the aligned liquid from the plurality of predetermined locations through a plurality of openings respectively aligned with the predetermined locations. The dispensing may be via electrowetting.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: June 25, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Charles S. Vann, Debjyoti Banerjee, Timothy G. Geiser, James C. Nurse, Nigel P. Beard
  • Patent number: 8470163
    Abstract: A method of manufacturing an exhaust gas sensor that includes positioning at least a portion of a subassembly of the exhaust gas sensor in a mold fixture, overmolding at least a portion of the subassembly with a ceramic material, and removing the overmolded subassembly from the mold fixture.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: June 25, 2013
    Assignee: Robert Bosch GmbH
    Inventor: John Robison
  • Patent number: 8465634
    Abstract: An integrated sensing device is capable of detecting analytes using electrochemical (EC) and electrical (E) signals. The device introduces synergetic new capabilities and enhances the sensitivity and selectivity for real-time detection of an analyte in complex matrices, including the presence of high concentration of interferences in liquids and in gas phases.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: June 18, 2013
    Assignee: Arizona Board of Regents
    Inventors: Nongiian Tao, Erica Forzani
  • Patent number: 8460539
    Abstract: A method of determining concentrations of a plurality of analytes from a single blood sample placed in a single opening. A portion of the single blood sample is absorbed by a test matrix that includes a plurality of layers and a chromogenic agent. A colored response is generated by the test matrix. The colored response is proportional to the concentration of a first analyte. A portion of the single blood sample is drawn into a capillary tube and placed in contact with an electrode and a counter-electrode. An electrical property of the single blood sample is analyzed through the electrode and counter-electrode. The electrical property is proportional to the concentration of a second analyte in the single blood sample.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: June 11, 2013
    Assignee: Polymer Technology Systems, Inc.
    Inventors: Robert Huffstodt, James J. Sutor
  • Patent number: 8454813
    Abstract: The present invention provides a device and methods of use thereof in microscale cell sorting. This invention provides sorting cytometers, which trap individual cells within vessels following exposure to dielectrophoresis, allow for the assaying of trapped cells, such that a population is identified whose isolation is desired, and their isolation.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: June 4, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Joel Voldman, Brian Michael Taff
  • Patent number: 8449744
    Abstract: The invention relates to the use of MS compatible surfactants in free-flow electrophoretic methods, which allow the separation of analytes with differentiated electrophoretic mobility. The surfactant is preferably a cleavable surfactant, such as PPS.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: May 28, 2013
    Assignee: Becton, Dickinson and Company
    Inventor: Mikkel Nissum
  • Patent number: 8449741
    Abstract: A method is provided for influencing the properties of cast iron by adding magnesium to the cast iron melt and measuring the oxygen content of the cast iron melt. Magnesium is added to the cast iron melt until the oxygen content of the cast iron melt is approximately 0.005 to 0.2 ppm at a temperature of approximately 1,420° C. A sensor for measuring the oxygen content in cast iron melts contains an electrochemical measuring cell containing a solid electrolyte tube.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: May 28, 2013
    Assignee: Heraeus Electro-Nite International N.V.
    Inventor: Danny Habets
  • Patent number: 8449758
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry; and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 28, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Patent number: 8444835
    Abstract: An electronic fluidic interface for use with an electronic sensing chip is provided. The electronic fluidic interface provides fluidic reagents to the surface of a sensor chip. The electronic sensing chip typically houses an array of electronic sensors capable of collecting data in a parallel manner. The electronic fluidic interface is used, for example, as part of a system that drives the chip and collects, stores, analyzes, and displays data from the chip and as part of a system for testing chips after manufacture. The electronic fluidic interface is useful, for example, nucleic sequencing applications.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 21, 2013
    Assignee: Intel Corporation
    Inventors: Oguz H. Elibol, Jonathan S. Daniels, Stephane L. Smith
  • Patent number: RE44330
    Abstract: This invention relates to a biosensor and more particularly to an electrochemical biosensor for determining the concentration of an analyte in a carrier. The invention is particularly useful for determining the concentration of glucose in blood and is described herein with reference to that use but it should be understood that the invention is applicable to other analytic determinations.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: July 2, 2013
    Assignee: LifeScan Inc.
    Inventors: Alastair M. Hodges, Thomas W. Beck, Oddvar Johansen