Patents Examined by Alex Noguerola
  • Patent number: 9080954
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: July 14, 2015
    Assignee: PANASONIC HEALTHCARE HOLDINGS CO., LTD.
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 9080960
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: July 14, 2015
    Assignee: PANASONIC HEALTHCARE HOLDINGS CO., LTD.
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 9080956
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: July 14, 2015
    Assignee: Panasonic Healthcare Holdings Co., Ltd
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 9080999
    Abstract: A computer-implemented method for controlling command voltages applied to electrodes during an electrophysiology measurement procedure using a high-throughput measurement system is provided. An initial command voltage is applied to the electrodes to obtain baseline currents respectively associated with the electrodes. A common offset voltage is determined based on the baseline currents, and an adjusted command voltage is determined based on the initial command voltage and the common offset voltage. The adjusted command voltage is applied to at least one of the electrodes to obtain an adjusted current measured by the electrode. A local offset voltage for the electrode is determined based on the adjusted current measured by the electrode. A subsequent command voltage applied to the electrode incorporates the common offset voltage and the local offset voltage.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: July 14, 2015
    Assignee: Molecular Devices, LLC
    Inventors: Yuri V. Osipchuk, Philip Churchward, Keith Thomas
  • Patent number: 9075000
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: July 7, 2015
    Assignee: Panasonic Healthcare Holdings Co., Ltd.
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 9075041
    Abstract: Methods of modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest from a biological sample in a biosensor having a multisite array of test sites. In particular, the methods modulate the pH or ionic concentration gradient near the electrodes in such biosensor. The methods of modulating the binding interactions provide a biosensor and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: July 7, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Sam Kavusi, Rajan Gangadharan, Christopher Johnson, Aldrich N. K. Lau, Piyush Verma
  • Patent number: 9074998
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: July 7, 2015
    Assignee: PANASONIC HEALTHCARE HOLDINGS CO., LTD.
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 9074997
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: July 7, 2015
    Assignee: PANASONIC HEALTHCARE HOLDINGS CO., LTD.
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 9074999
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: July 7, 2015
    Assignee: PANASONIC HEALTHCARE HOLDINGS CO., LTD.
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 9075004
    Abstract: Devices and methods are provided for determining the concentration of a reduced form of a redox species. For example, a device can include a working electrode and a counter electrode spaced by a predetermined distance so that reaction produces from the counter electrode arrive at the working electrode. An electric potential difference can be applied between the electrodes, and the potential of the working electrode can be selected such that the rate of electro-oxidation of the reduced form of the species is diffusion controlled. Current as a function of time can be determined, the magnitude of the steady state current can be estimated, and a value indicative of the diffusion coefficient and/or of the concentration of the reduced form of the species can be obtained from the change in current with time and the magnitude of the steady state current. Other embodiments of apparatuses, devices, and methods are also provided.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: July 7, 2015
    Assignee: LifeScan, Inc.
    Inventors: Alastair McIndoe Hodges, Thomas William Beck, Oddvar Johansen
  • Patent number: 9061262
    Abstract: A device having a first substrate and a second substrate separated from the first substrate to form a volume between the first and second substrates, electrodes disposed on the first and second substrates and facing the volume, each substrate comprising at least one electrode, and a first insulating layer disposed on the first substrate and a second insulating layer disposed on the second substrate to separate the electrodes from the volume.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: June 23, 2015
    Assignee: Applied Biosystems, LLC
    Inventors: Charles S. Vann, Debjyoti Banerjee, Timothy G. Geiser, James C. Nurse, Nigel P. Beard
  • Patent number: 9057694
    Abstract: Gels, such as polyacrylamide gels, are provided that include linear polyacrylamide in the stacking gel. Native gels that include linear polyacrylamide in the stacker can be used to separate biomolecular complexes, such as protein complexes. Gel cassettes in which the gap width between front and back plates does not vary by more than 5% at the upper edge of the cassette are also provided. The gel cassettes can be used for electrophoretic separation of proteins and protein complexes on native gels, such as native gels that include linear polyacrylamide in the stacker. The native gels can have multiple wells for electrophoresing at least one sample and/or at least one molecular weight standard.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: June 16, 2015
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Timothy Updyke, Thomas Beardslee
  • Patent number: 9044724
    Abstract: A method for dispensing liquid for use in biological analysis may comprise positioning liquid to be dispensed via electrowetting. The positioning may comprise aligning the liquid with a plurality of predetermined locations. The method may further comprise dispensing the aligned liquid from the plurality of predetermined locations through a plurality of openings respectively aligned with the predetermined locations. The dispensing may be via electrowetting.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: June 2, 2015
    Assignee: Applied Biosystems, LLC
    Inventors: Charles S. Vann, Debjyoti Banerjee, Timothy G. Geiser, James C. Nurse, Nigel P. Beard
  • Patent number: 9044808
    Abstract: A method for assembling multi-component nano-structures that includes dispersing a plurality of nano-structures in a fluid medium, and applying an electric field having an alternating current (AC) component and a direct current (DC) component to the fluid medium containing the plurality of nano-structures. The electric field causes a first nano-structure from the plurality of nano-structures to move to a predetermined position and orientation relative to a second nano-structure of the plurality of nano-structures such that the first and second nano-structures assemble into a multi-component nano-structure.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: June 2, 2015
    Assignee: The Johns Hopkins University
    Inventors: Chia-Ling Chien, Donglei Fan, Robert Charles Cammarata
  • Patent number: 9034159
    Abstract: Methods and systems for measuring the oxidation-reduction potential of a fluid sample are provided. The system includes a test strip with a sample chamber adapted to receive a fluid sample. The sample chamber can be associated with a filter membrane. The test strip also includes a reference cell. The oxidation-reduction potential of a fluid sample placed in the sample chamber can be read by a readout device interconnected to a test lead that is in electrical contact with the sample chamber, and a reference lead that is in electrical contact with the reference cell. Electrical contact between a fluid sample placed in the sample chamber and the reference cell can be established by a bridge. The oxidation-reduction potential may be read as an electrical potential between the test lead and the reference lead of the test strip.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: May 19, 2015
    Assignee: Luoxis Diagnostics, Inc.
    Inventors: Raphael Bar-Or, David Bar-Or, Leonard T. Rael
  • Patent number: 9017543
    Abstract: Analytes in a liquid sample are determined by methods utilizing sample volumes from about 0.3 ?l to less than 1 ?l and test times from about 3.5 to about 6 seconds after detection of the sample. The methods are preferably performed using small test strips including a sample receiving chamber filled with the sample by capillary action.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: April 28, 2015
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventor: Christopher D. Wilsey
  • Patent number: 9017544
    Abstract: The concentration of glucose in a blood sample is determined by methods utilizing test strips having a sample receiving cavity having a volume from about 0.3 ?l to less than 1 ?l and determining the glucose concentration within a time period from about 3.5 seconds to about 8 seconds.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: April 28, 2015
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventor: Christopher D. Wilsey
  • Patent number: 9017537
    Abstract: A method of separating metallic semiconducting carbon nanotubes includes providing a source of a mixture of semiconducting and metallic carbon nanotubes in a carrier liquid with one of the semiconducting and metallic carbon nanotubes being functionalized to carry a charge. The mixture is pressurized to cause a liquid jet of the mixture to be emitted through a nozzle. A drop formation mechanism modulates the liquid jet to form from the jet first and second drops traveling along a path. An electric field modulating device, positioned relative to the jet, produces first and second electric fields. A deflection device applies the first electric field as the first drop is formed to concentrate the functionalized carbon nanotubes in the first drop and applies the second electric field as the second drop is formed. The deflection device causes the first or second drop to begin traveling along another path.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 28, 2015
    Assignee: Eastman Kodak Company
    Inventors: Shashishekar P. Adiga, Hrishikesh V. Panchawagh, Michael A. Marcus
  • Patent number: 9011662
    Abstract: The invention provides droplet actuator assemblies and systems and methods of manufacturing the droplet actuator assemblies. In certain embodiments, two-piece enclosures are used to form a droplet actuator assembly that houses a droplet operations substrate. In certain other embodiments, one-piece enclosures are used to form a droplet actuator assembly that houses a droplet operations substrate. In the plastic injection molding process for forming substrates of the droplet actuator assemblies of the present invention may utilize insert molding (or overmolding) processes for forming a gasket in at least one substrate, thereby avoiding the need for providing and installing a separate gasket component. Further, the droplet actuator assemblies may include features that allow ultrasonic welding processes to be used for bonding substrates together. The manufacturing systems of the present invention for fabricating the droplet actuator assemblies may utilize continuous flow reel-to-reel manufacturing processes.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 21, 2015
    Assignee: Advanced Liquid Logic, Inc.
    Inventors: Tih-Hong Wang, George Brackett, David Clevenger, Donovan E. Bort
  • Patent number: 9011661
    Abstract: Methods and apparatus providing improved fidelity and specificity when separating nucleic acids from a sample, but without need for amplification. In particular, using the disclosed methods, it is possible to isolate a variant nucleic acid (i.e., a mutation) from a non-target nucleic acid (i.e., a wild-type) when the variant is present in the original sample at a much lower concentration than the non-target, e.g., 1:10,000, without substantial loss of the variant.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: April 21, 2015
    Assignees: Boreal Genomics, Inc., The University of British Columbia
    Inventors: Andrea Marziali, Nitin Sood