Patents Examined by Alex Torres-Rivera
  • Patent number: 11909319
    Abstract: The present invention relates to methods (100) and to a device (200) for operating voltage transformers (210, 220) connected in parallel, wherein the voltage transformers (210, 220) are operated in different operating modes (120, 130) as a function of a determined temperature (Tist) in order to avoid overheating of an individual voltage transformer.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: February 20, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Gholamabas Esteghlal, Markus Klein
  • Patent number: 11909299
    Abstract: A power converting apparatus includes a first arm including a switching element and a switching element connected in series, a second arm connected in parallel with the first arm and including a switching element and a switching element connected in series, a reactor having one end connected to the switching element and the switching element and the other end connected to a single-phase alternating-current power supply, and a smoothing capacitor connected in parallel with the first arm and the second arm. The power converting apparatus includes a driving circuit driving the switching element, a bootstrap circuit, and a diode adjusting a power supply voltage, wherein a first voltage at which a forward current starts to flow to the diode is lower than a second voltage at which a forward current starts to flow in a body diode formed in the second switching element.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: February 20, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Yamakawa, Koichi Arisawa
  • Patent number: 11901821
    Abstract: An apparatus includes a ramp generator configured to produce a set signal for determining a phase shift between a first phase and a second phase of a power converter, a first phase on-timer configured to produce a first reset signal for determining a turn-on time of a high-side switch of the first phase of the power converter, a second phase on-timer configured to produce a second reset signal for determining a turn-on time of a high-side switch of the second phase of the power converter, and a control logic block configured to generate gate drive signals for the first phase and the second phase of the power converter based on the set signal, the first reset signal and the second reset signal.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: February 13, 2024
    Assignee: M3 Technology Inc.
    Inventors: Bo Yang, Xiaoyu Xi, David Meng
  • Patent number: 11901803
    Abstract: A driver includes a low-resistance charging path between a supply voltage rail and a first output node, a high-resistance charging path between the supply voltage rail and the first output node, an inverter coupled to the first output node and configured to enable and disable the low-resistance charging path, and a high-resistance discharging path between the first output node and a second output node. The first output node is coupled to a control terminal of a pass gate transistor in some implementations. The low-resistance charging path charges a voltage on the first output node to a threshold voltage of the pass gate transistor, and the high-resistance charging path charges the voltage on the first output node greater than the threshold voltage of the pass gate transistor. The high-resistance discharging path discharges the voltage on the first output node.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: February 13, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Bernhard Wolfgang Ruck, Ruediger Kuhn, Oliver Nehrig
  • Patent number: 11901801
    Abstract: A method of measuring a load current provided to a load of a switching converter includes obtaining a first reference voltage defining a peak of an inductor current passing through an inductor of the switching converter, generating a pulse based on the first reference voltage and an on-time of at least one power switch of the switching converter, generating an output signal by filtering the pulse, and setting a second mode from a first mode when a value of the load current is less than a first threshold value based on the output signal. The generating of the pulse further includes generating the pulse having a width extended in proportion to the on-time in the second mode.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: February 13, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min Sang Park, Kyungrae Kim
  • Patent number: 11894773
    Abstract: A buck-boost circuit is provided. First terminals of a first switch and a second switch are connected to an anode of the input power supply, first terminals of a third switch and a first capacitor are connected to a second terminal of the first switch, a second terminal of the third switch is connected to a cathode of the input power supply, a first terminal of a fourth switch, a second terminal of the first capacitor, and a first terminal of a first inductor are connected to a second terminal of the second switch, a second terminal of the fourth switch is connected to the cathode of the input power supply, a second terminal of the first inductor is connected to a anode of an output power supply, and a second capacitor is connected in parallel between the anode and a cathode of the output power supply.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: February 6, 2024
    Assignee: SPREADTRUM COMMUNICATIONS (SHANGHAI) CO., LTD.
    Inventor: Yongjin Wang
  • Patent number: 11888385
    Abstract: A voltage converter that receives at input a primary DC voltage that is variable over a wide voltage range and that supplies at output a regulated first secondary DC voltage and an unregulated second secondary DC voltage, including a buck converter with inductors coupled to two outputs, it also includes a boost converter arranged upstream of the buck converter and able to boost the primary voltage when activated, and a charge pump module arranged between the second secondary voltage and the first secondary voltage and able to balance the charges when activated, the boost converter and the charge pump module being activated simultaneously.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: January 30, 2024
    Inventor: Stéphane Saint-Macary
  • Patent number: 11888384
    Abstract: In an embodiment, a switching converter includes: a switching stage including first and second switching devices for receiving an input voltage and for providing an output voltage; a driving stage including first and second driving devices for driving the first and second switching devices, respectively; a current sensing arrangement for sensing an output current provided by the switching stage; a voltage generation arrangement configured to generate a supply voltage for powering the driving stage, the voltage generation arrangement being configured to adjust the supply voltage according to the sensed output current; and a charge recovery stage configured to store a first electric charge being lost from the first driving device during driving of the first switching device and to release at least partially the stored first electric charge to the second driving device during driving of the second switching device.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: January 30, 2024
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Niccolo′ Brambilla, Sandro Rossi, Valeria Bottarel, Alessandro Nicolosi
  • Patent number: 11888399
    Abstract: In a first mode, a first feedback controller generates a first control signal SCTRL1 based on a signal at a first feedback pin, so as to control a first pre-driver. A second feedback controller ¥ generates a second control signal based on a signal at a second feedback pin, so as to control a second pre-driver. In a second mode, the first feedback controller ¥ generates the first control signal based on a signal at the first feedback pin, so as to control the first pre-driver. The second pre-driver drives the second pre-driver based on a third control signal received from a first circuit block.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: January 30, 2024
    Assignee: ROHM CO., LTD.
    Inventor: Kazunori Itou
  • Patent number: 11880218
    Abstract: A current output circuit includes an input circuit that outputs a second current in response to a first current when the first current is inputted, an output circuit that outputs a third current in response to the second current, and a control circuit that causes the output circuit to output a current when a control signal is inputted before the first current is inputted to the input circuit. The output circuit includes transistors of a first group and the input circuit includes transistors of a second group.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: January 23, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kazuhiko Ishimoto
  • Patent number: 11876443
    Abstract: A power converter is provided. The power converter includes a switched-capacitor conversion circuit and an inductor buck circuit. The switched-capacitor conversion circuit receives an input voltage at an input terminal and performs a switching operation to convert the input voltage to an intermediate voltage. The inductor buck circuit is coupled to an output terminal of the switched-capacitor conversion circuit to receive the intermediate voltage and operates at a constant on-time to generate an output voltage at a conversion output terminal according to the intermediate voltage. The inductor buck circuit includes an inductor. In response to that a state of an inductor current used for charging the inductor corresponds to a predetermined condition, a switching action of the switching operation is enabled, so that the switched-capacitor conversion circuit is switched from a first turned-on state to a second turned-on state.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: January 16, 2024
    Assignee: NUVOTON TECHNOLOGY CORPORATION
    Inventors: Po-Hsun Huang, Wei-Chan Hsu
  • Patent number: 11870186
    Abstract: Aspects of the present disclosure are directed to a power distribution device. The power distribution device includes an input to receive power, a plurality of outputs, each output of the plurality of outputs being configured to provide output power, and being coupled to the input, a plurality of switching devices, each switching device of the plurality of switching devices being coupled to a respective output of the plurality of outputs, and a controller coupled to each of the plurality of switching devices. The controller is configured to receive power information indicative of the output power provided by each output of the plurality of outputs, determine, based on the power information, that an overcurrent condition exists, select, based on the power information and based on the determination that the overcurrent condition exists, at least one of the plurality of switching devices to disable, and disable the at least one switching device.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: January 9, 2024
    Assignee: SCHNEIDER ELECTRIC IT CORPORATION
    Inventors: Hui-Ju Lee, Huang-Yun Chen
  • Patent number: 11870353
    Abstract: A power supply unit provides power to a common output node. The power supply unit includes a first power conversion block electrically coupled to convert the electrical power input to a first output power supply share supplied to the common output node. The first power conversion block is configured to decrease output voltage from the first power conversion block based on output current from the first power conversion block reaching a rated current level. A second power conversion block is electrically coupled to convert the electrical power input to a second output power supply share supplied to the common output node. The second power conversion block is configured with a predesignated open circuit voltage setting and is further configured to contribute the second output power supply share to the common output node based on the output voltage at the common output node decreasing to the predesignated electrical voltage setting.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 9, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Chee Kiong Fong, Geoffrey Jason Shew, Suet Fong Tin, Michael R. Volkman
  • Patent number: 11863057
    Abstract: Apparatus and associated methods relate to dynamic bandwidth control of a variable frequency modulation circuit by selective contribution of a crossover frequency tuning engine (XFTE) in response to a transient in a switching frequency. In an illustrative example, the XFTE may generate a transient control signal (Ctrans) in response to a transient in a control output signal (Cout) indicative of switching frequency and received from a feedback control circuit. The XFTE may generate Ctrans, for example, according to a predetermined relationship between a crossover frequency and the switching frequency of the modulation circuit. The feedback control circuit may, for example, generate Cout from a predetermined reference and a control input signal. Cout may, for example, correspond to a pulse-width modulated output delivered to a load through an inductor. Various embodiments may advantageously increase the effective bandwidth of the modulation circuit while maintaining desired frequency response characteristics.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: January 2, 2024
    Assignee: Alpha and Omega Semiconductor International LP
    Inventor: Chris M. Young
  • Patent number: 11863056
    Abstract: An apparatus configured to measure a load current provided to a load of a switching converter includes a pulse generation circuit configured to generate a control pulse based on a power switch driving signal of the switching converter, a reference current generation circuit configured to generate a reference current based on the control pulse, a clock generation circuit configured to generate a clock signal based on the control pulse and the reference current, and a clock counter configured to count the number of cycles of the clock signal during a switching period of the switching converter. The reference current generation circuit is configured to adjust the reference current to compensate for a leakage current generated in the clock generation circuit during the switching period.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: January 2, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min Sang Park, Dongjin Keum, Byoungmook Kim
  • Patent number: 11863082
    Abstract: A power converter includes a power conversion circuit having a first terminal set and a second terminal set, configured to convert power input via one of the first terminal set and the second terminal set and output the converted power via the other of the first terminal set and the second terminal set; a measurement unit; a controller configured to control the power conversion circuit to generate a voltage/current waveform travelling along the first network with a power supplied by a second power source linked to the second terminal set of the power conversion circuit in response to a condition that a change rate of the measurement of the voltage/current exceeds a threshold; and locate a fault on the first network. The power conversion circuit can be re-used for different modes of operation either for power transmission under normal condition or for fault location under fault condition.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: January 2, 2024
    Assignee: ABB Schweiz AG
    Inventors: Xiaobo Yang, Kai Liu, Chunming Yuan, Hailian Xie, Xing Huang
  • Patent number: 11863058
    Abstract: A power converter circuit is disclosed. In one embodiment, the power converter includes a switching circuit coupled to an input power supply node and a regulated power supply node via an inductor, wherein the switching circuit is configured to source respective charge current to the regulated power supply node during a plurality of active cycles. The power converter further includes a control circuit configured to determine, for a particular active cycle, an average inductor current. The control circuit is further configured to perform a comparison of the average inductor current to a threshold value. Based on results of the comparison, the control circuit is configured to deactivate the switching circuit for a different active cycle subsequent to the particular active cycle. Two methods are disclosed to identify mode transitions, depending on conditions such as minimum time on and discontinuous current mode.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: January 2, 2024
    Assignee: Apple Inc.
    Inventor: Erhan Ozalevli
  • Patent number: 11855534
    Abstract: A power converter can include first, second, third, and fourth power switches, and a driver for operating the drive switches to modify an input voltage. An AC coupling capacitor can be coupled between the first and fourth power switches. Bootstrap capacitors can be used for driving the first and second power switches, which can be high-side switches. In some embodiments, a current sensing circuit can be used to measure current through the third and/or fourth power switches and for determining the current through the power converter. In some embodiments, the power converter can monitor the voltage across the AC coupling capacitor and can determine the current through the power converter based on the monitored voltages. In some embodiments, the AC coupling capacitor can be pre-charged before the power converter begins normal operation.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: December 26, 2023
    Assignee: FARADAY SEMI, INC.
    Inventors: Seungbeom Kevin Kim, Jack Walter Cornish, III, Saurabh Anil Jayawant, Parviz Parto
  • Patent number: 11853898
    Abstract: A DC/DC converter fault diagnosis method based on an improved sparrow search algorithm, includes: establishing an simulation module of the converter, selecting a leakage inductance current of a transformer as a diagnosis signal, and collecting diagnosis signal samples under OC faults of different power switching devices of the converter as a sample set; improving a global search ability of a sparrow search algorithm by using a Levy flight strategy; dividing the sample set into a training set and a test set, preliminarily establishing an architecture of a deep belief network, and initializing network parameters; optimizing a quantity of hidden-layer units of the deep belief network by using an improved sparrow search algorithm, to obtain a best quantity of hidden-layer units of the deep belief network; and training an optimized deep belief network obtained based on the improved sparrow search algorithm, and obtaining a fault diagnosis result based on a trained network.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: December 26, 2023
    Assignee: WUHAN UNIVERSITY
    Inventors: Yigang He, Yingying Zhao, Zhikai Xing, Xiaoyu Liu, Xiao Wang
  • Patent number: 11855555
    Abstract: The invention relates to a control device for an inverter which includes three half-bridges each having a first power switching element connected to a first DC voltage potential and a second power switching element connected to a second DC voltage potential. The control device is arranged for driving the power switching elements for converting a DC voltage present between the DC voltage potentials into a polyphase AC current in a normal operating mode and for transferring the inverter from the normal operating mode into a safe operating mode. The control device is further set up to alternately drive the power switching elements in the safe operating mode for switching single-phase active short circuits and for switching two-phase active short circuits.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: December 26, 2023
    Assignee: VALEO SIEMENS EAUTOMOTIVE GERMANY GMBH
    Inventors: Karsten Wiedmann, Timur Werner, Markus Reymann