Patents Examined by Ali Imam
  • Patent number: 7004903
    Abstract: An electronic system for determining the density and structure of bone tissue and stimulating osteogenesis in dentistry, having a diagnosis system for injecting an ultrasonic signal U(t) into a bone portion and analyzing the ultrasonic signal received after traveling through the bone portion to determine a number of characteristic data items of the signal describing physical and structural characteristics of the bone tissue. The diagnosis system performs a number of measuring steps to determine and memorize a set of characteristic data items describing progress of a bone growth process and/or a bone repair process following extraction of a tooth and/or placement of a dental prosthesis in the bone portion. The system also has an osteogenesis stimulation system for directing an ultrasonic stimulation signal onto the bone portion to promote the bone growth and/or bone repair process.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: February 28, 2006
    Assignee: IGEA S.r.l.
    Inventors: Ruggero Cadossi, Stefania Setti, Claudio Bertacchini
  • Patent number: 7001335
    Abstract: Disclosed is an ultrasonic generating and transmitting apparatus equipped with a transmission section for transmitting ultrasonic vibration from a vibration section. A plurality of linear members for transmitting ultrasonic vibration and binding plates which bind the linear members in such a state as to be apart from one another are provided. The transmission section is comprised of the linear members and the binding plates.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: February 21, 2006
    Assignee: Aisin Kiko Co., Ltd.
    Inventors: Kazunari Adachi, Tsuneyoshi Sugimoto
  • Patent number: 6999811
    Abstract: A method and a device provide for the registration of two 3D image data sets of an object to be examined. The object to be examined is provided with a plurality of markers In order to enable a registration to be carried out, the positions of the markers in the 3D image data sets are first determined in a co-ordinate system associated with the relevant 3D image data set. The distances between the markers and/or the angles formed between lines which intersect in a marker and extend through two further markers are then determined. Finally, a transformation rule for the transformation of one of the 3D image data sets to the co-ordinate system of the other 3D image data set is determined.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: February 14, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Reiner Koppe, Erhard Paul Artur Klotz, Johannes Catharina Antonius Op de Beek
  • Patent number: 6999812
    Abstract: An arteriosclerosis detection system including an electrocardiographic signal detection device, an eyeground image detection device for detecting an eyeground image in synchronization with an electrocardiographic signal detected by the detection device. The arteriosclerosis detection system further includes an eyeground vein constriction detection device for detecting the constriction of an eyeground vein in the vicinity of a site at which the eyeground vein and an eyeground artery cross each other. The constriction is detected based on the detected eyeground image in synchronization with the electrocardiographic signal. The arteriosclerosis detection system detects the eyeground image by executing an algorithm of software, which provides an eyeground image synchronized with an electrocardiographic signal by obtaining a stationary eyeground image synchronized with an arbitrary electrocardiographic signal from an animated eyeground image.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: February 14, 2006
    Assignees: BML, Inc.
    Inventors: Reiji Kawada, Syoichi Takano
  • Patent number: 6994712
    Abstract: A clip and a bioabsorbable marker are employed to mark a biopsy site. The former provides a permanent marker that is clamped onto tissue and that cannot migrate from the site over time. The latter is gradually bioabsorbed over time but the time may vary widely from weeks to months. In most embodiments, the clip and marker are integrally formed with one another at the time of manufacture. In one embodiment, the clip and marker are independently made but are joined to one another during the site-marking process. The markers are deployed by core biopsy needles of the type employing a vacuum, of the type that does not employ a vacuum, and by coaxial biopsy needles.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: February 7, 2006
    Assignee: Biopsy Sciences, LLC
    Inventors: John S. Fisher, Frederick Ahari
  • Patent number: 6994674
    Abstract: A multi-dimensional transducer array has pitch along one dimension less than the pitch along a second dimension. The multi-dimensional transducer array with the same or different pitch is manufactured from a plurality of modules. Each of the modules are separately diced and then aligned and combined. Elements of a transducer array are used for isolating a transmit channel from a receive channel. Separate signal lines or traces are provided individually for each element on opposite sides of each element. A transmit channel may connect to one electrode on an element, and the receive channel may connect to an opposite electrode on the element. A multi-dimensional array is provided for time division multiplex processing. A probe houses the multi-dimensional array and a multiplexer.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: February 7, 2006
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Todor Sheljaskow, Grazyna Palczewska, Stephen C. Englund, Thomas G. Houck, Gregg W. Frey, Ron Ho, Sevig Ayter, Xiaocong Guo
  • Patent number: 6991606
    Abstract: In transmissions of each frame through intermittent transmissions, by performing ultrasonic wave transmissions while increasing a mechanical function step by step, destructions of bubbles of a contrast medium can be induced step by step according to their different sizes. By generating ultrasonic images using the destructions at the respective steps as the sources of echoes, it is possible to provide new ecological information including, for example, information reflecting the dynamics of substances smaller than the red blood cells, the distribution of predatory cells, new diagnosis information, etc.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: January 31, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Naohisa Kamiyama
  • Patent number: 6990369
    Abstract: The invention provides a device and method for monitoring inflammation of the epithelium. The device consists of a head region, a handle region and an optical bundle. At least two of the optical fibers in the bundle are utilized as a source of radiation, these two fibers are at two different angles from normal. At least one of the other optical fibers is utilized as a detector for the reflected radiation, or alternatively an image guide can be used as the detector. The device of the invention can be part of an external or internal system that can include a light source, the device, a multiplexer, a spectrometer, and a computer for data analysis. The method of the invention allows for the detection and monitoring of general inflammation of the oral epithelium. The inflammation of the epithelium can be detected or monitored to diagnose diseases of the oral epithelium, monitor such diseases, monitor treatment of such diseases, or pre-screen for and monitor preventative treatments of such diseases.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: January 24, 2006
    Assignee: The United States of America as represented by the Department of Health and Human Services
    Inventors: Amir H. Gandjbakhche, David W. Hattery, Jim Mulshine, Paul Smith, Victor Chernomordik, Edward Wellner
  • Patent number: 6988990
    Abstract: The present invention provides a method and system for using the computer keyboard and/or speech recognition technology to automatically fill an image annotation during an ultrasound scan. More specifically, it provides a method and a system for annotating a displayed ultrasound image using commands that is comprised of; providing an annotation vocabulary sorted in descending order of usage frequency providing a method to select a subset of words from the vocabulary that are relevant to the imaged anatomy, detecting the initial command, selecting a suggestion list from the selected sub-vocabulary, and displaying the suggestion list to the user for optional acceptance or further specification.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: January 24, 2006
    Assignee: General Electric Company
    Inventors: Lihong Pan, John T. Doherty, Laurence M. Yudkovitch
  • Patent number: 6985767
    Abstract: A body fat measuring apparatus is provided with a light emitting device 1 for projecting light rays to a subject's tissue, light receiving devices 3 and 4 for detecting a transmitted light ray having passed through the subject's tissue and/or a reflected light ray reflected inside the subject's body, and a CPU 6 for calculating the subject's subcutaneous fat thickness and/or body fat percentage by performing an operation by use of the detection results of the light receiving devices 3 and 4. The light receiving devices 3 and 4 are situated at different distances from the light emitting device 1.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: January 10, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Motomi Horiuchi, Shinji Uchida
  • Patent number: 6984210
    Abstract: A method and apparatus are provided for investigating tissue in which acoustic data are derived from scattering a plurality of pulsed spherical or cylindrical acoustic waves from a plurality of transmission elements through the tissue to a plurality of receiving elements. The acoustic data, which include a mix of reflected and transmitted acoustic waves, are received and digitized, and a representation of a portion of the tissue is generated from the digitized acoustic data.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 10, 2006
    Assignee: Barbara Ann Karmanos Cancer Institute
    Inventors: David H. Chambers, Jeffrey Mast, Stephen G. Azevedo, Frank Wuebbeling, Frank Natterer, Neb Duric, Peter J. Littrup, Earle Holsapple
  • Patent number: 6979292
    Abstract: An apparatus includes an optical transmission unit which irradiates a subject to be examined with light containing a specific wavelength component, an electroacoustic conversion unit which receives acoustic waves generated inside the subject by the light radiated by the optical transmission unit and converts them into electrical signals, an image data generating unit which generates first image data on the basis of the reception signals obtained by the electroacoustic conversion unit, an electroacoustic conversion unit which receives ultrasonic reflection signals obtained by transmitting ultrasonic waves to the subject and converts them into electrical signals, an image data generating unit which generates second image data on the basis of the reception signals obtained by the electroacoustic conversion unit, and a display unit which combines the first and second image data and displays the resultant data.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: December 27, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shoichi Kanayama, Kazuhiro Itsumi
  • Patent number: 6979296
    Abstract: A method for imaging diseased tissue is provided. The method provides delivering to the diseased tissue a liposomal imaging agent comprising liposomes containing an imaging agent. The liposomal imaging agent is bound to an antibody by an antigenic linker so that the antibody binds the liposomal imaging agent to the diseased tissue. The liposomes are broken to release the imaging agent using a catheter, and the imaging agent is viewed using an imaging technique. The tissue can also be treated by delivering a therapeutic agent to the tissue using the catheter, for example, within the liposomes of the liposomal imaging agent.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: December 27, 2005
    Assignee: SBM Biologics, Inc.
    Inventor: Jacko R. See
  • Patent number: 6980849
    Abstract: Instrumentation and methods are provided for performing image-guided spinal surgery using an anterior surgical approach. In one embodiment, the method comprises providing a surgical navigation reference device, mounting the reference device to bone at a location remote from the spinal column and in a substantially fixed position relative thereto, accessing a portion of the spinal column from an anterior direction, and performing an image-guided surgical procedure on the spinal column using an anterior surgical approach. In another embodiment, the mounting of the reference device comprises anchoring the reference device to a portion of the patient's pelvic bone, and more specifically the anterior region of the iliac crest. In a further embodiment, the image-guided surgical procedure comprises a spinal implantation procedure wherein a spinal implant is inserted into an intervertebral opening formed along the lumbar region of the spinal column using an anterior surgical approach.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: December 27, 2005
    Inventor: Ricardo Sasso
  • Patent number: 6979293
    Abstract: A method for monitoring a clot dissolution treatment in a patient's vasculature comprises positioning a catheter at a treatment site in the patient's vasculature. The method further comprises performing a clot dissolution treatment at the treatment site. The clot dissolution treatment comprises delivering ultrasonic energy and a therapeutic compound from the catheter to the treatment site such that a clot located at the treatment site at least partially dissolves. The method further comprises delivering a thermal measurement signal from a first portion of the catheter to the treatment site during the clot dissolution treatment. The method further comprises receiving the thermal measurement signal at a second portion of the catheter. The method further comprises comparing the delivered thermal measurement signal with the received thermal measurement signal to evaluate a blood flow rate at the treatment site.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: December 27, 2005
    Assignee: Ekos Corporation
    Inventors: Douglas R. Hansmann, Robert L. Wilcox, Floyd Karp, Natalya Peskin, Kim R. Volz
  • Patent number: 6976961
    Abstract: Accurate tissue motion systems and methods are provided. Motion of the ultrasound transducer is accounted for in estimates at tissue motion. Correcting for transducer motion better isolates localized tissue contractions or expansions, such as motion of the myocardial muscle or fibers. Accurate motion estimation is also provided by determining an angle of motion from the ultrasound data. The angle of motion is used to adjust velocity estimates, providing two-dimensional velocity vectors (i.e. motion estimates comprising motion in at least two dimensions). Movement of tissue is determined by correlating speckle or a feature represented by two different sets of ultrasound data obtained at different times. Additional aspects include tracking the location of a tissue of interest. A characteristic of strain, such as the strain rate or strain, is calculated for the tracked tissue of interest.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: December 20, 2005
    Assignee: Acuson Corporation
    Inventors: John I. Jackson, Randall L. Schlesinger, John W. Allison
  • Patent number: 6976960
    Abstract: Velocity data is automatically anti-aliased. Since a tissue velocity varies a small amount over small distances, more accurate velocity or strain rate estimates are calculated automatically with an anti-aliasing algorithm. Since the velocity information derived from phase information, like Doppler, contains uncertainties of a multiple of a specific velocity (e.g., a constant multiple of 2? error), a specific velocity is at least one of multiple possible velocities. The possible velocities are calculated and the specific velocity selected. Additional velocities may then be extrapolated for different regions or subsequent frames of data for a same region.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: December 20, 2005
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: John I. Jackson
  • Patent number: 6971992
    Abstract: An ultrasonic imaging method and apparatus wherein the ultrasonic energy transmitted to a subject under examination is generated by a plurality of electroacoustic transducers, which are actuated for transmission with predetermined delays according to a predetermined focusing rule; the ultrasonic energy reflected by the subject under examination is received by an array of electroacoustic transducers which are actuated to read received signals with predetermined delays according to a received signal focusing rule. The focused received signals are turned into image data for ultrasonic image display. The transmitting transducers are actuated with such delays as to generate a homogeneous acoustic field over all or part of the region of the subject under examination.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: December 6, 2005
    Assignee: Esaote, S.p.A.
    Inventor: Marino Cerofolini
  • Patent number: 6971991
    Abstract: An ultrasonic imaging apparatus combined with an x-ray imaging apparatus and/or an additional ultrasonic imaging apparatus performs ultrasonic sonography and/or x-ray imaging or multiple ultrasonic sonography to produce imagery that are spatially correlated. A holding means holds an object to be imaged in compression in an examination area. The x-ray source and the ultrasonic source are each relocatable from an inactive imaging position to an inactive non-imaging position. The x-ray image and ultrasonic sonography image are both taken in transmission and the resulting images contain a registry object to assist a user in spatially correlating the images. The speckle contained in the sonography image is reduced allowing for higher resolution of abnormalities in the tissue and improved concurrent biopsy procedures.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: December 6, 2005
    Assignee: Imperium, Inc.
    Inventors: Robert S. Lasser, Marvin E. Lasser, John W. Gurney
  • Patent number: 6969353
    Abstract: Systems and methods for enhanced color-flow imaging of contrast-agent perfused blood vessels and other tissues within a patient's body are disclosed. The method generally comprises, introducing one or more contrast agents into the body, power-modulating transmit pulses into the body, receiving echoes from the body, processing the received echoes to reduce tissue-generated echoes and echoes from stationary contrast agent, using a color-flow processor to generate a color-encoded display responsive to contrast-agent motion. The method may be implemented by a system with a an excitation-signal source, a transducer, an ultrasound-processing system having multiple image processors including a color-flow processor, as well as, a clutter filter, and an arbiter, and a display-processing system.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: November 29, 2005
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: George A. Brock-Fisher, Jodi L.T. Perry, Patrick G. Rafter, McKee Dunn Poland