Patents Examined by Allen Porter, Jr.
  • Patent number: 10219703
    Abstract: A method and system for intra-oral imaging using High Dynamic Range (HDR) and highlight removal is presented. The method comprising generating a first High HDR irradiation map of teeth with multiple images captured with different exposures for same intra-oral scene; and removing highlight caused by a specular reflection in a detail-reserved way from the first HDR irradiation map so as to obtain a second HDR irradiation map in which the specular reflection is at least partly suppressed.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: March 5, 2019
    Assignee: Carestream Dental Technology Topco Limited
    Inventors: Yingqian Wu, Wei Wang, Guijian Wang, Victor C. Wong
  • Patent number: 10219715
    Abstract: A biocompatible, implantable electrode for electrically active medical devices. The implantable medical electrode has a surface geometry which optimizes the electrical performance of the electrode, while mitigating the undesirable effects associated with prior art porous surfaces. The electrode has an optimized surface topography for improved electrical performance. Such a electrode is suitable for devices which may be permanently implanted in the human body as stimulation electrodes, such as pacemakers, or as sensors of medical conditions. Such is achieved by the application of ultrafast high energy pulses to the surface of a solid, monolithic electrode material for the purpose of increasing the surface area and thereby decreasing its after-potential polarization. In addition, the electrode material comprises a biocompatible metal having a minimal or eliminated amount of metal oxides which are detrimental to electrode performance.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: March 5, 2019
    Assignee: Pulse Technologies, Inc.
    Inventor: Andrew E. Fisk
  • Patent number: 10207110
    Abstract: Disclosed herein is a device, and method for treating heart failure by electrically modulating a splanchnic nerve with an implantable device.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: February 19, 2019
    Assignee: Axon Therapies, Inc.
    Inventors: Mark Gelfand, Tamara Colette Baynham, Howard Levin
  • Patent number: 10206740
    Abstract: A cutting device includes an elongated shaft that extends between a proximal end and a distal end. A distal arm extends from the distal end of the elongated shaft. The distal arm includes an inner surface defining a cavity and an outer surface defining a blunt tip. At least one proximal arm extends from the distal end of the elongated shaft at a position proximal to the distal arm. The at least one proximal arm having an inner surface defines a cavity including a cutting portion configured to cut tissue.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: February 19, 2019
    Assignee: Medtronic Holding Company Sárl
    Inventors: Amy L. Arthur, Mojan Goshayeshgar
  • Patent number: 10206738
    Abstract: An apparatus includes an interface assembly and a shaft assembly. The interface assembly is for use with a robotic system and includes a first drive assembly. The first drive assembly includes a first slot having a distal recess and a transverse recess. The shaft assembly is removably couplable with the interface assembly and includes an end effector and a first coupling feature. The first drive assembly of the interface assembly actuates the end effector of the shaft assembly. The first coupling feature is couplable with the first slot of the first drive assembly to longitudinally fix the shaft assembly relative to the interface assembly.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: February 19, 2019
    Assignee: Ethicon LLC
    Inventors: Shailendra K. Parihar, Barry C. Worrell
  • Patent number: 10195419
    Abstract: An apparatus for neuromuscular electrical stimulation is provided. The apparatus may be a stimulation lead having an elongated member made up of at least one conductor and an insulative sheath surrounding at least a portion of the conductor. A distal portion of the elongated member may include one or more electrodes and at least one fixation element to secure the one or more electrodes in or adjacent to a desired anatomical site for providing stimulation thereto. The stimulation lead has a strain relief portion on the proximal side of the one or more electrodes, configured to reduce axial forces on the distal region of the elongated member, and the effects thereof, to reduce the risk of, or even prevent, displacement of the one or more electrodes and to accommodate localized flexural motion. The apparatus also may include at least one fixation element sized and configured to be deployed between muscle layers to maintain the electrode position at the stimulation site.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: February 5, 2019
    Assignee: Mainstay Medical Limited
    Inventors: Jason Alan Shiroff, Jason John Skubitz, Prashant Brijmohansingh Rawat
  • Patent number: 10195441
    Abstract: Systems and methods are provided for optimizing hemodynamics within a patient's heart, e.g., to improve the patient's exercise capacity. In one embodiment, a system is configured to be implanted in a patient's body to monitor and/or treat the patient that includes at least one sensor configured to provide sensor data that corresponds to a blood pressure within or near the patient's heart; at least one adjustable component designed to cause blood to flow in a direction opposite to the normal direction (regurgitation) within the patient's heart; and a controller configured for adjusting the function of the at least one adjustable component based at least in part on sensor data from the at least one sensor.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: February 5, 2019
    Assignee: CARDIOFLOW TECHNOLOGIES, LLC
    Inventors: Daniel Walter Kaiser, Clayton A. Kaiser
  • Patent number: 10195442
    Abstract: Systems and methods for determining multiple sites for multi-site cardiac stimulation are disclosed. The system can comprise an electrostimulation circuit that can deliver electrostimulation to one or more candidate sites in at least one chamber of the heart, such as a left ventricle of the heart, within the same cardiac cycle. The system can sense a physiologic signal during the electrostimulation of the heart, determine activation timings from first and second sets of physiologic signals respectively sensed at the plurality of candidate sites when the heart undergoes specified intrinsic activities or stimulation, and determine at least first and second selected sites, among a plurality of candidate sites, using the respective activation timings. The system can deliver multi-site stimulation such as to the first and second selected sites during a same cardiac cycle, simultaneously or separated by a specified temporal offset.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: February 5, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Qi An, Pramodsingh Hirasingh Thakur
  • Patent number: 10188445
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: January 29, 2019
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda Francis, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy
  • Patent number: 10183160
    Abstract: A wearable therapeutic device includes a garment configured to be worn on a torso of a patient. The garment has an anterior portion and a posterior portion. The garment is configured to house at least one defibrillator component, a first therapy electrode disposed in the anterior portion of the garment, a second therapy electrode disposed in the posterior portion of the garment, and an alarm module configured to alert the patient of an impending defibrillation shock from the at least one defibrillator component to be delivered by at least one of the first therapy electrode and the second therapy electrode. The first therapy electrode and the second therapy electrode are configured to be electrically coupled to the at least one defibrillator component. At least one of the first therapy electrode and the second therapy electrode is at least one of woven into the garment and comprises a textile material.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: January 22, 2019
    Assignee: ZOLL Medical Corporation
    Inventors: Thomas E. Kaib, Shane S. Volpe, Emil Oskin
  • Patent number: 10172559
    Abstract: A device and method for manufacturing an implantable cardiac monitor device are provided. The method joins a feed-through assembly to a device housing having electronic components therein. The feed-through assembly includes conductors having distal ends connected to the electronic components and has proximal ends projecting from the feed-through assembly. The method assembles a header having a sensing electrode and an antenna embedded within a non-conductive header body. The electrode and antenna includes corresponding interconnection plates. The header body includes a housing mounting surface that includes at least one passage aligned with an interconnect cavity that includes the interconnection plates. The header body further includes a window exposing the interconnect cavity and interconnect regions.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: January 8, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Wisit Lim, Reza Imani, Brett Villacencio, Mitch Goodman, Ofer Rosenzweig
  • Patent number: 10166678
    Abstract: It is an object to provide a surgical robot which can enhance flexibility of treatment while ensuring sufficient safety of a surgery. The surgical robot has a robot body, an input unit for inputting control information of the robot body, a control unit for controlling the robot body based on the control information input to the input unit, an input side abnormality detection unit for detecting abnormality of an operator, an output side abnormality detection unit for detecting abnormality of a surgery state, an abnormality countermeasure unit for dealing with the abnormality of the surgery state detected by the output side abnormality detection unit, contents of an abnormality countermeasure action being changed based on a detection result of the input side abnormality detection unit.
    Type: Grant
    Filed: December 25, 2013
    Date of Patent: January 1, 2019
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Masayuki Kamon, Kenji Noguchi
  • Patent number: 10165977
    Abstract: Therapy delivery to a patient may be controlled based on a determined sleep stage of the patient. In examples, the sleep stage may be determined based on a frequency characteristic of a biosignal indicative of brain activity of the patient. A frequency characteristic may include, for example, a power level within one or more frequency bands of the biosignal, a ratio of the power level in two or more frequency bands, or a pattern in the power level of one or more frequency bands over time. A therapy program may be selected or modified based on the sleep stage determination. Therapy may be delivered during the sleep stage according to the selected or modified therapy program. In some examples, therapy delivery may be controlled after making separate determinations of a sleep stage based on the biosignal and another physiological parameter, and confirming that the sleep stage determinations are consistent.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: January 1, 2019
    Assignee: Medtronic, Inc.
    Inventors: Jianping Wu, Gregory F. Molnar, Gabriela C. Molnar, Timothy J. Denison
  • Patent number: 10155116
    Abstract: Systems and methods for selecting one or more sites at or within at least one heart chamber for cardiac stimulation are disclosed. The system can include a physiologic sensor circuit to sense physiologic signals at two or more candidate stimulation sites. The system can generate respective activation timing indicators corresponding to the two or more candidate stimulation sites, and detect MI indicators indicating the presence of, or spatial proximity of each of the two or more candidate stimulation sites to a MI tissue. The system can use the activation timing indicators and the MI indicators to select at least one target stimulation site or to determine an electrostimulation vector. The system can display the selected target stimulation site to a user, or deliver electrostimulation to the patient at the target stimulation site or according to the determined electrostimulation vector.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: December 18, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Martin McDaniel, Jason Humphrey, Qi An
  • Patent number: 10143788
    Abstract: The present disclosure relates to an improved transcutaneous energy transfer (TET) system that generates and wirelessly transmits a sufficient amount of energy to power one or more implanted devices, including a heart pump, while maintaining the system's efficiency, safety, and overall convenience of use. The disclosure further relates one or more methods of operation for the improved system.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: December 4, 2018
    Assignee: HeartWare, Inc.
    Inventors: John Rudser, Jeffrey A. LaRose, Ramiro Gomez
  • Patent number: 10136828
    Abstract: Electroanatomic mapping is carried out by inserting a multi-electrode probe into a heart of a living subject, recording electrograms from the electrodes concurrently at respective locations in the heart, delimiting respective activation time intervals in the electrograms, generating a map of electrical propagation waves from the activation time intervals, maximizing coherence of the waves by adjusting local activation times within the activation time intervals of the electrograms, and reporting the adjusted local activation times.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: November 27, 2018
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Richard P. M. Houben, Meir Bar-Tal, Yaniv Ben Zriham, Roy Urman, Shmuel Auerbach
  • Patent number: 10136535
    Abstract: Various embodiments of a hermetically-sealed package and methods of forming such packages are disclosed. In one or more embodiments, the hermetically-sealed package can include a housing and a feedthrough assembly that forms a part of the housing. The feedthrough assembly can include a non-conductive substrate and a feedthrough. The feedthrough can include a via from an outer surface to an inner surface of the non-conductive substrate, a conductive material disposed in the via, and an external contact disposed over the via on the outer surface of the non-conductive substrate. The external contact can be electrically coupled to the conductive material disposed in the via. Further, the external contact can be hermetically sealed to the outer surface of the non-conductive substrate by a laser bond surrounding the via.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: November 20, 2018
    Assignee: Medtronic, Inc.
    Inventor: David A Ruben
  • Patent number: 10124176
    Abstract: An implantable medical device (IMD) may include a communication module, a therapy control module, a firmware control module, and a service application. The communication module is configured to wirelessly communicate over an RF link with an external device. The therapy control module is configured to deliver therapy to the patient, and may include a reprogrammable therapy logic circuit configured to operate the therapy control module in a reprogrammable mode of operation, and base-therapy state machine (BTSM) logic circuit configured to operate the therapy control module in a base therapy mode of operation. The firmware control module may include CPU and a memory. The service application may be stored in the memory. The firmware control module is configured to launch the service application, and the BTSM logic circuit provides a base level of sensing and pacing therapy while the communications module in parallel maintains the RF link with the external device.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: November 13, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Yongjian Wu, Eric Husky, David Doudna, Chao-wen Young, Min Yang, Robert Romano, Tommy Akkila, Goran Budgifvars, Eduardo Serrano
  • Patent number: 10124174
    Abstract: An example of a system includes an implantable medical device (IMD) for implantation in a patient, where the IMD includes a cardiac pace generator, phrenic nerve stimulation (PS) sensor, a memory, and a controller, and where the controller is operably connected to the cardiac pace generator to generate cardiac paces. The controller is configured to provide a trigger for conducting a PS detection procedure and perform the PS detection procedure in response to the trigger. In performing the PS detection procedure the controller is configured to receive a signal from the sensor, detect PS using the signal from the sensor, and record the PS detection in storage within the IMD.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: November 13, 2018
    Assignee: Cardiac Pacemakes, Inc.
    Inventors: Holly Rockweiler, Sunipa Saha, Aaron R. McCabe, Krzysztof Z. Siejko
  • Patent number: 10099054
    Abstract: The application relates to a hearing assistance device comprising an implanted part and to a method of its operation. The disclosure aims at improving the identification and processing of recorded nerve response data in an implanted part. The implanted part comprises a) A multitude of electrodes; b) Stimulation circuitry electrically coupled to a stimulation electrode during a stimulation time period; c) Measurement circuitry electrically coupled to a recording electrode during a measurement time period; d) A control unit configured to control the timing of the application of the stimulation signal in the stimulation time period and to control the measurement time period relative to the stimulation time period; and e) A processing unit configured to record the measured signal in the measurement time period and to identify a response from the auditory nerve based on said measured signal. The invention may e.g. be used for cochlear implant type hearing aids.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: October 16, 2018
    Assignee: Oticon Medical A/S
    Inventors: Jonathan Laudanski, Nicolas Veau