Patents Examined by Alvin J. Stewart
  • Patent number: 10617518
    Abstract: A transcatheter valve prosthesis including a tubular stent, a prosthetic valve component disposed within and secured to the stent, and a centering mechanism coupled to and encircling an outer surface of the tubular stent. The centering mechanism includes a self-expanding centering ring having an expanded diameter in the expanded configuration that is greater than an expanded diameter of the tubular stent in the expanded configuration and a plurality of self-expanding spokes radially extending between the tubular stent and the centering ring. The centering mechanism may include a base ring and/or a skirt. Alternatively, the centering mechanism includes a plurality of self-expanding loops. When each loop is in a delivery configuration the loop has a straightened profile that proximally extends from a proximal end of the tubular stent. When each loop is in an expanded configuration the loop has a U-shaped profile radially spaced apart from the tubular stent.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 14, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jeffrey Sandstrom, Joel Racchini
  • Patent number: 10617512
    Abstract: A multi-laminar electrospun nanofiber scaffold for use in repairing a defect in a tissue substrate is provided. The scaffold includes a first layer formed by a first plurality of electrospun polymeric fibers, and a second layer formed by a second plurality of electrospun polymeric fibers. The second layer is combined with the first layer. A first portion of the scaffold includes a higher density of fibers than a second portion of the scaffold, and the first portion has a higher tensile strength than the second portion. The scaffold is configured to degrade via hydrolysis after at least one of a predetermined time or an environmental condition. The scaffold is configured to be applied to the tissue substrate containing the defect, and is sufficiently flexible to facilitate application of the scaffold to uneven surfaces of the tissue substrate, and to enable movement of the scaffold by the tissue substrate.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: April 14, 2020
    Assignee: Washington University
    Inventors: Matthew R. MacEwan, Jingwei Xie, Zack Ray, Younan Xia
  • Patent number: 10617796
    Abstract: Disclosed are self-expanding medical implants for placement within a lumen of a patient. The implants comprise a woven or non-woven structure having a substantially tubular configuration, and are designed to be low-profile such that they are deliverable with a small diameter catheter. The implants have a high recoverability and desired mechanical properties.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: April 14, 2020
    Assignee: Lyra Therapeutics, Inc.
    Inventors: Maria Palasis, Changcheng You, Danny Concagh, Lee Core, Kicherl Ho, Upma Sharma, Gregory T. Zugates
  • Patent number: 10610358
    Abstract: A prosthetic heart valve can include an outer frame coupled to an inner frame such that the outer frame can be moved between a first position and a second position in which the outer frame is inverted relative to the inner frame. The inner frame and the outer frame define between them an annular space, and a pocket closure can bound the annular space to form a pocket in which thrombus can form and be retained. The pocket closure can include a stretchable pocket covering that can move from a first position in which the pocket covering has a first length when the outer frame is in the first position relative to the inner frame and a second position in which the pocket covering has a second length greater than the first length when the outer frame is in the second position relative to the inner frame.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: April 7, 2020
    Assignee: Tendyne Holdings, Inc.
    Inventors: Zach Vidlund, Michael Evans, Robert M. Vidlund
  • Patent number: 10610348
    Abstract: An endoscopic stent for implantation in a patient after sleeve gastrectomy or biliopancreatic diversion with duodenal switch or biliopancreatic diversion with duodenal switch comprising a stent portion, the stent portion comprising a proximal end portion, the proximal end portion defined by a length of about 50 mm to about 200 mm, an enlarged middle portion, a middle portion having an enlarged diameter relative to the proximal end portion and the distal end portion and defined by a length of about 20 mm to about 80 mm, and a distal end portion and a polymeric sleeve portion engaged to and extending distally from the distal end portion of the stent.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: April 7, 2020
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: John A. Hingston, Claude O. Clerc, Jonathan Root, Vishal Shah
  • Patent number: 10588734
    Abstract: A three-dimensional electrospun nanofiber scaffold for use in repairing a defect in a tissue substrate is provided. The scaffold includes a flexible deposited fiber network of varying density including a first and second set of set of electrospun fibers. The second set of electrospun fibers is coupled to the first. A first portion of the flexible deposited fiber network includes a higher density of fibers than a second portion of the flexible deposited fiber network, and the tensile strength of first portion is higher than that of the second portion. The scaffold is sufficiently flexible to facilitate application of scaffold to uneven surfaces of the tissue substrate, and enables movement of the scaffold by the tissue substrate. The first and second set of fibers are configured to degrade within three months after application, and each fiber of the deposited fiber network has a diameter of 1-1000 nanometers.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: March 17, 2020
    Assignee: Washington University
    Inventors: Matthew R. MacEwan, Jingwei Xie, Zack Ray, Younan Xia
  • Patent number: 10588752
    Abstract: A modular bone model can include a bone component and an implant component that can be positioned on the bone component. The implant component can be shaped and sized to correspond to a head component of a medical implant to simulate an articulating surface of the head component. Similarly, the bone component can be shaped to simulate a natural bone to which the medical implant can be mounted. Alternatively, the head component of the medical implant can be mounted directly to the bone component to simulate the mounting on the natural bone.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: March 17, 2020
    Assignee: Biomet Manufacturing, LLC
    Inventors: Nathan A. Winslow, Clinton E. Kehres
  • Patent number: 10575940
    Abstract: An implantable respiratory apparatus including an expandable/contractible element; wherein at least part of the element is configured to be anchored to the subject's chest bones.
    Type: Grant
    Filed: May 29, 2016
    Date of Patent: March 3, 2020
    Inventor: Elias Hellou
  • Patent number: 10576184
    Abstract: An object of the present invention is to provide a cell-containing bioabsorbable tubular structure having molecular permeability, a device for manufacturing the tubular structure, and a method for manufacturing the tubular structure. According to the present invention, there is provided a tubular structure constituted with a cell structure which contains biocompatible polymer blocks and cells, in which the plurality of polymer blocks is disposed in voids between the plurality of cells.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: March 3, 2020
    Assignee: FUJIFILM Corporation
    Inventor: Kentaro Nakamura
  • Patent number: 10575945
    Abstract: Described herein is a prosthetic valve device having an optimized valve component for durability and functionality of the collapsible leaflets. Specially designed commissures contribute to the optimization along with identified parameters. In other embodiments, the invention is a frame formed from a unique cutting pattern.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: March 3, 2020
    Assignee: THUBRIKAR AORTIC VALVE, INC.
    Inventors: Mano J. Thubrikar, Yogesh Darekar
  • Patent number: 10568672
    Abstract: An osteotomy wedge according to an exemplary aspect of the present disclosure includes, among other things, an asymmetrical body that includes a perimeter established by a continuous, smooth surface. Further, the perimeter includes a concave surface.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: February 25, 2020
    Assignee: ARTHREX, INC.
    Inventors: James McWilliam, William Michael Karnes, Karen Leigh Gallen, Kent Ellington
  • Patent number: 10568741
    Abstract: Systems, devices, and methods are provided for orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, or any other suitable orthopedic attachment. Any of the implantable components may be include one or more porous surfaces. The porous surface may be textured by protrusions that connect to and extend from the surface. The sizes and concentration of the protrusions may be varied for specific applications to accommodate different implants and patient anatomies. A porous implant may also include one or more internal or external solid portions that strengthen the implant.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: February 25, 2020
    Assignee: Smith & Nephew, Inc.
    Inventors: Justin Steve Conway, Ryan L. Landon, Jeffrey Joel Shea
  • Patent number: 10568994
    Abstract: Disclosed are self-expanding medical implants for placement within a lumen of a patient. The implants comprise a woven or non-woven structure having a substantially tubular configuration, and are designed to be low-profile such that they are deliverable with a small diameter catheter. The implants have a high recoverability and desired mechanical properties.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: February 25, 2020
    Assignee: 480 Biomedical Inc.
    Inventors: Maria Palasis, Changcheng You, Danny Concagh, Lee Core, Kicherl Ho, Upma Sharma, Gregory T. Zugates
  • Patent number: 10548801
    Abstract: A motion assistance apparatus including a proximal support configured to support a proximal part of a user, a distal support configured to support a distal part of the user, a support assembly configured to connect the proximal support and the distal support and adjust a separation distance between the proximal support and the distal support and a rotation angle of the distal support, and a controller configured to control the support assembly based on a virtual dual spring-mass model designed using the proximal support as a body of mass, the controller including a first virtual spring configured to connect the proximal support and a first portion of the distal support and a second virtual spring configured to connect the proximal support and a second portion of the distal support is disclosed.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: February 4, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Youngjin Park, Keehong Seo, Bokman Lim, Seungyong Hyung
  • Patent number: 10543083
    Abstract: A method of assembling an electronic prosthetic aortic valve is provided. The method includes inserting an electronics component into a valve component, the electronics component including one or more electrodes and a prosthetic-valve coil, and the valve component including a frame and prosthetic leaflets coupled to the frame; and coupling the electronics component to the valve component. Other embodiments are also described.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: January 28, 2020
    Assignee: RAINBOW MEDICAL LTD.
    Inventor: Yossi Gross
  • Patent number: 10537459
    Abstract: A leg unit for a wearable sitting posture assisting device, comprises an upper support designed to receive a weight force of a person, a lower support designed to transmit the person's weight force to a ground, a joint connecting the at least two supports to each other, and a blocking means implementing a blocked state to block the joint at at least one sitting angle corresponding to an at least partly sitting posture, the leg unit comprising a guiding means for the blocking means, which guiding means is designed to allow a rotation of the joint while the blocking means is in the blocked state, to a wearable sitting posture assisting device, comprising two of these leg units, and to a method to block such a wearable sitting posture assisting device in an at least partly sitting posture.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: January 21, 2020
    Assignee: Noonee AG
    Inventors: Keith Gunura, Daniel Vafi, Robin Jergen, Simon Hutter
  • Patent number: 10537419
    Abstract: Examples of prostheses are provided having an internal branch. A tubular graft body of the prosthesis defines a main lumen extending between an inflow end and an outflow end of the graft body. A stent structure is coupled along the graft body. A trough is at least partially defined by a trough wall extending into the main lumen from a sidewall of the graft body. A side branch defines a branch lumen and extends from the trough within the main lumen towards one of the inflow or outflow ends of the graft body. A branch lumen facing surface of the trough wall is a continuous surface with an outer surface of the sidewall of the graft body. A boundary of the trough may be configured to provide a smooth transition surface between the trough and the sidewall.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: January 21, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: Jarin A. Kratzberg, Blayne A. Roeder, Jennifer Stacy
  • Patent number: 10531948
    Abstract: A bearing component 2 for a joint replacement prosthesis comprises a first bearing element 4; a second bearing element 6, and a linking element 8, operatively connecting the first and second bearing elements 4, 6 and permitting relative motion there between. The flexible linking element 8 prevents dislocation of mobile bearings in a total knee replacement prosthesis. The invention also relates to a bridging element which retains the linking element 8 with some play, which acts as a ligament support 2051, and which causes a deflection of the line of action of a ligament 1018. A joint replacement prosthesis is also disclosed comprising a biasing element 1140 or a tensioning element 1220 operatively coupled to the artificial ligament 1018. The biasing element 1140 or tensioning element 1220 may be housed in the stem of a tibia tray 1006.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: January 14, 2020
    Assignee: Biomet UK Limited
    Inventors: David Wolfson, Russell Lloyd, John Joseph O'Connor, Mohammed Imran Khan, David Wycliffe Murray, Christopher Dodd, John Goodfellow
  • Patent number: 10531952
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 14, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 10524917
    Abstract: The implants of the invention relate to improved implants formed using additive manufacturing techniques, the implants including a hemispherical cup portion, and an ischium flange, a pubic ramus flange and an ilium flange, each flange extending outwardly from the perimeter of the hemispherical cup portion, wherein the implant surface includes an area of integrally formed three dimensional scaffold on the bone apposition surfaces of the cup portion and on a bone apposition surface of at least one of the flanges of the implant. The invention also relates to implants with different surface texture and alignment features, together with methods for the manufacture of patient-specific implants of the invention.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: January 7, 2020
    Assignee: Ossis Limited
    Inventors: Timothy John Dunn, Peter James Burn, Nicholas McKenzie Smyth