Patents Examined by Amritbir K Sandhu
  • Patent number: 11764873
    Abstract: Disclosed is an electronic device (1) for converting a wireless signal (2) in the mm-wave or sub-THz range into at least one modulated optical signal (16). The electronic device (1) comprises an antenna element (11) for converting the wireless signal (2) into a guided electrical signal (12), wherein the antenna element (11) is arranged on a printed circuit board (10b?) or on a first integrated chip (10?). The electronic device (1) comprises an electrical signal converter (13) for converting the at least one guided electrical signal (12) into a conditioned electrical signal (14), wherein the electrical signal converter (13) is arranged on a second integrated chip (10?).
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 19, 2023
    Assignee: ETH ZURICH
    Inventors: Maurizio Burla, Juerg Leuthold
  • Patent number: 11754862
    Abstract: A polarization scrambler using a retardance element (RE) is disclosed. The polarization scrambler may include an optical fiber input to transmit an optical signal, and a beam expander to receive and expand the optical signal to create an expanded optical signal. The polarization scrambler may include a retardance element (RE) to cause a polarization scrambling effect on the expanded optical signal and to create a scrambled expanded optical signal. The polarization scrambler may include a beam reducer to receive and reduce the scrambled expanded optical signal to create a scrambled optical signal. The polarization to scrambler may include an optical fiber output to receive scrambled optical signal. The optical fiber output may transmit the scrambled optical signal to one or more downstream optical components.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: September 12, 2023
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Joshua Philipson, Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes
  • Patent number: 11750287
    Abstract: An optical Digital Signal Processor (DSP) circuit includes a digital core configured to implement digital signal processing functionality and configured to operate at a plurality of baud rates including a full baud rate and a half-baud rate; and an analog interface including a Digital-to-Analog Converter (DAC) section and an Analog-to-Digital Converter (ADC) section, wherein the analog interface is connected to the digital core and is configured to operate at the full baud rate when the digital core is configured to operate at any of the plurality of baud rates.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: September 5, 2023
    Assignee: Ciena Corporation
    Inventors: Sadok Aouini, Robert G. Gibbins, Yalmez Yazaw, Harvey Mah, Naim Ben-Hamida
  • Patent number: 11740406
    Abstract: A circuit for detecting an optical data signal includes a photonics substrate and first and second photodiodes formed in the photonics substrate. The first photodiode is configured to receive, via an input port formed in the photonics substrate, a first portion of the optical data signal and convert light power of the first portion of the optical data signal to generate a first current based on the optical data signal. The second photodiode is configured to output a second current without receiving any portion of the optical data signal. The second current corresponds to a dark current induced in the second photodiode. The circuit is configured to subtract the second current from the first current to generate an output signal corresponding to a power of the optical data signal without dark current induced in the first photodiode.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: August 29, 2023
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Jie Lin, Masaki Kato, Bruno Tourette, Brian Taylor
  • Patent number: 11736200
    Abstract: A combinatorial optimization problem processing device is for associating a combinatorial optimization problem having N elements with an Ising model to process the combinatorial optimization problem. The combinatorial optimization problem processing device includes: a 1×2 Mach-Zehnder optical modulator that receives a polarized clock pulse train; an optical interference circuit that receives polarized clock pulse trains that were modulated by the Mach-Zehnder optical modulator; an optical coupler that couples output of the optical interference circuit with an initialization optical pulse train that creates a neutral state with respect to interactions between the elements; and a modulation signal generator that performs waveform shaping on an electrical signal obtained by photoelectrically converting an output signal of the optical coupler, generates a modulation signal for the Mach-Zehnder optical modulator, and externally outputs a monitor signal that represents a solution to the optimization problem.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 22, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventor: Toshiya Sato
  • Patent number: 11728892
    Abstract: In order to make a communicable distance in an optical cable of an optical signal which is subjected to amplitude modulation longer, a re-modulation device is provided with: an acquisition unit that acquires, from a first modulation optical signal obtained by performing first amplitude modulation on an optical signal with second data sent from a modulation transmission device to a demodulation reception device, the second data; and a re-modulation unit that, when determining passing of the first modulation optical signal, sends, to the demodulation reception device, a second modulation optical signal obtained by performing second amplitude modulation on the inputted optical signal with the second data.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: August 15, 2023
    Assignee: NEC CORPORATION
    Inventor: Ryu Kurahashi
  • Patent number: 11711147
    Abstract: A transceiver comprises a transmitter including a light source, a modulator coupled to the light source, a driver that drives the modulator according to a set of driving conditions to cause the modulator to output optical signals based on light from the light source, and an output that passes first portions of the optical signals output by the modulator. The transceiver further comprises a first detector that detects second portions of the optical signals output from the modulator, and a receiver including a second detector that detects optical signals from an external transmitter.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: July 25, 2023
    Assignee: MELLANOX TECHNOLOGIES, LTD.
    Inventors: Nikolaos (Nikos) Argyris, Yoav Rosenberg, Dimitrios Kalavrouziotis, Paraskevas Bakopoulos, Elad Mentovich
  • Patent number: 11705968
    Abstract: An adjusting method for stabilizing optical characteristic parameters applicable to transmitter optical subassemblies with silicon photonic chips is provided.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: July 18, 2023
    Assignee: Global Technology Inc.
    Inventors: Likai Fang, Jianliang Xu, Zhiwei Yin
  • Patent number: 11695482
    Abstract: An apparatus includes an input receiving a modulated optical data signal having components of at least first and second polarizations, a first optical detector receiving the data signal, the first optical detector being first polarization-selective or first polarization-sensitive, passing components of the data signal having the second polarization, and outputting a first electrical signal, a second optical detector coupled to the first optical detector to receive the components of the data signal having the second polarization, and outputting a second electrical signal, and a processor applying a Kramers-Kronig process to the first and second electrical signals, and outputting the data signal using the Kramers-Kronig processed first and second electrical signals.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: July 4, 2023
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Carsten Schmidt-Langhorst, Robert Elschner, Robert Emmerich, Isaac Sackey, Patrick Runge
  • Patent number: 11689288
    Abstract: A small form factor pluggable (“SFP”) transceiver for use in a communications network includes a transmitter adapted to be coupled to the network for supplying signals to the network, a receiver adapted to be coupled to the network for receiving signals from the network, and a programmable signal processing module coupled to the transmitter and the receiver and adapted to be programmed from a remote station coupled to the network. The module can be programmed to perform at least one service or management function on the network.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: June 27, 2023
    Assignee: Accedian Networks Inc.
    Inventors: Claude Robitaille, Patrick Ostiguy
  • Patent number: 11689291
    Abstract: An optical full-field transmitter for an optical communications network includes a primary laser source configured to provide a narrow spectral linewidth for a primary laser signal, and a first intensity modulator in communication with a first amplitude data source. The first intensity modulator is configured to output a first amplitude-modulated optical signal from the laser signal. The transmitter further includes a first phase modulator in communication with a first phase data source and the first amplitude-modulated optical signal. The first phase modulator is configured to output a first two-stage full-field optical signal. The primary laser source has a structure based on a III-V compound semiconductor.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: June 27, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Haipeng Zhang, Junwen Zhang, Mu Xu, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 11683091
    Abstract: The present disclosure has an object to provide a technique for enabling a communication state to be confirmed not in a communication building but in a work site, and to provide a technique for enabling correct splicing between optical cables to be confirmed before fusion splicing.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: June 20, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hidenobu Hirota, Takui Uematsu, Hiroyuki Iida, Naotsugu Ambe
  • Patent number: 11683102
    Abstract: A method for allocating bandwidth to a first ONU, a second ONU, M1 ONUs, and M2 ONUs includes, during an allocation cycle, (i) granting a respective upstream time slot to, of a plurality of N ONUs, only each of the M1 ONUs, and (ii) granting a first upstream time slot to the first ONU. Each of the M1 ONUs and M2 ONUs is one of the plurality of N ONUs. The method also includes, during a subsequent cycle, (i) granting a respective upstream time slot to, of the plurality of N ONUs, only each of the M2 ONUs. The N ONUs includes a skipped-ONU that is one of either, and not both, the M1 ONUs and the M2 ONUs. The method includes, during the subsequent allocation cycle, granting a second upstream time slot to a second ONU, which is not one of the plurality of N ONUs.
    Type: Grant
    Filed: October 16, 2021
    Date of Patent: June 20, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Haipeng Zhang, Junwen Zhang, Jingjie Zhu, Mu Xu, Zhensheng Jia
  • Patent number: 11664916
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: May 30, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Armin Pitzer, Anthony Sanders, Christian Jenkner
  • Patent number: 11658746
    Abstract: A method may include obtaining a topology of an optical network. The topology may indicate multiple optical links within the optical network. The method may also include determining a signal noise tolerance for each of multiple optical signal types supported by the optical network and obtaining an optical noise for each of the multiple optical links. The method may also include determining a number of the multiple optical signal types that each of the multiple optical links is able to support based on the optical noise for each of the optical links and the signal noise tolerance for each of the multiple optical signal types and ranking the multiple optical links based on the number of the multiple optical signal types that each of the optical links is able to support.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: May 23, 2023
    Assignee: FUJITSU LIMITED
    Inventors: William Schubert, Francois Georges Moore
  • Patent number: 11652618
    Abstract: An imaging and quantum cryptography apparatus comprising alight-refracting optical setup (101), a light-directing optical setup (102), an imaging sensor (103) capturing light refracted from the light-refracting optical setup and directed to the imaging sensor by the light-directing optical setup and at least one of a quantum key distribution (QKD) transmitter (104) generating a QKD light signal and transmitting the QKD light signal via the light-directing optical setup and through the light-refracting optical setup and a QKD receiver (105) acquiring and decoding light signals refracted from the light-refracting optical setup and directed to the QKD receiver by the light-directing optical setup. The imaging sensor, the at least one of QKD transmitter and QKD receiver, and the alignment unit, all use the same light-directing optical setup and the same light-refracting optical setup.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: May 16, 2023
    Assignee: IMAGESAT INTERNATIONAL (I.S.I.) LTD.
    Inventors: Doron Shterman, Shlomo Indy
  • Patent number: 11646792
    Abstract: An optical communications terminal including a polarizing element responsive to a first linearly polarized optical beam and rotating the first linearly polarized optical beam in a first linear direction, a beam separator responsive to and passing the first linearly polarized optical beam, and a circular polarizing element responsive to the first linearly polarized optical beam from the beam separator and circularly polarizing the first linearly polarized optical beam for transmission, where the circular polarizing element is switchable between two orthogonal switching states. The terminal receives a circularly polarized optical beam from another terminal and linearly polarizes the circularly polarized optical beam from the other terminal in a second linear direction that is orthogonal to the first linear direction and the beam separator directs the circularly polarized optical beam from the other terminal in a direction away from the polarizing element.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: May 9, 2023
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Daniel W Lam, James M Zamel, Arthur B O'Connor, Donald G Heflinger
  • Patent number: 11646801
    Abstract: An analog front-end module of an ultra-wideband optical receiver including a transimpedance amplifying unit and a distributed amplifier unit is provided. The transimpedance amplifying unit is configured to convert an externally-inputted current signal into a voltage signal, amplify the voltage signal, and then output a voltage-amplified signal. The distributed amplifier unit includes an input transmission network, an input matching load, an output transmission network, an output matching load, and a plurality of gain units. The input transmission network is configured to receive the voltage-amplified signal and distribute the voltage-amplified signal to each gain unit for further amplification. The input matching load is configured to absorb the voltage-amplified signal reflected to the transimpedance amplifying unit. The output transmission network is configured to superimpose amplified signals outputted from the gain units and output in combination.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: May 9, 2023
    Assignee: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Xiaojun Bi, Chaodi Sheng
  • Patent number: 11646800
    Abstract: An optical transmitter includes quadrature modulators and light receiving elements to which inverted output light of output light from the quadrature modulators is input, the quadrature modulators including parent Mach-Zehnder modulators in respective paths of a first pair of paths into which carrier light from a light source is split, the parent Mach-Zehnder modulators including child Mach-Zehnder modulators including first phase modulation units, and second phase modulation units.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: May 9, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shogo Yamanaka, Yusuke Nasu, Hiroto Kawakami
  • Patent number: 11637638
    Abstract: A method at a receiver comprises receiving a signal conveying symbols at respective positions within a clock cycle, the symbols comprising a data set consisting of data symbols and a pilot set consisting of pilot symbols; determining detected phases of the symbols based on the signal; generating first phase estimates based on the detected phases of a subset of the pilot set, and reference phases of the subset of the pilot set, the first phase estimates being associated with the positions of the pilot set; and generating second phase estimates based on the detected phases of the pilot set, reference phases of the pilot set, and the first phase estimates, the second phase estimates being associated with the positions of the pilot set and of at least a subset of the data set; and applying rotations to the detected phases of the symbols based on the second phase estimates.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: April 25, 2023
    Assignee: CIENA CORPORATION
    Inventors: James St. Leger Harley, Tung Trong Nguyen, Timothy Creasy, Blake Toplis