Patents Examined by Andrew W Begeman
  • Patent number: 11944468
    Abstract: A material decomposition apparatus for performing decomposition of a material in an object. The apparatus includes a data storage section for storing correction data preliminarily generated by decomposing one of three or more materials into the other two materials, a data input section to which radiation data of the object is inputted, the radiation data being divided into a plurality of energy levels, and a decomposition processing section for repeatedly performing two-material decomposition for decomposition of the other two materials of the three or more materials using the radiation data at different energy levels and the correction data to perform decomposition of the inside of the object into the three or more materials.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 2, 2024
    Assignee: FUJIFILM HEALTHCARE CORPORATION
    Inventors: Shinichi Kojima, Kazuma Yokoi, Isao Takahashi, Fumito Watanabe, Fuyuhiko Teramoto, Taiga Gotou
  • Patent number: 11944424
    Abstract: Methods and systems with 129Xe dynamic spectroscopy with a fitting function that includes one or more non-Lorentzians, optionally with a barrier Voigt, and signal processing for identifying cardiogenic oscillations for evaluating disease states, use in drug discovery or monitoring disease status.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: April 2, 2024
    Assignee: Duke University
    Inventors: Elianna Bier, Bastiaan Driehuys, Ziyi Wang, Sudarshan Rajagopal
  • Patent number: 11944499
    Abstract: A contrast element tracking method comprises obtaining a sequence of frames each comprising ultrasound or other medical imaging data representing an anatomical region of a human or animal subject at a respective different time; for each frame, identifying one or more portions of the ultrasound or other medical imaging data as single or multiple contrast element signal portions representative of a contrast element or plurality of contrast elements; assigning respective position data to each of the single contrast element signal portions and each of the multiple contrast element signal portions; and using a linking model that uses at least said assigned position data to link single or multiple contrast element signal portions represented in at least one of the frames to single or multiple contrast element signal portions represented in at least one other of the frames thereby to track movement of contrast elements through said region of the subject.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: April 2, 2024
    Assignee: Heriot-Watt University
    Inventors: Vassilis Sboros, Weiping Lu, Rhodri Wilson, Evangelos Kanoulas
  • Patent number: 11890142
    Abstract: Methods and systems are provided for automatically characterizing lesions in ultrasound images. In one example, a method includes automatically determining an A/B ratio of a region of interest (ROI) via an A/B ratio model that is trained to output the A/B ratio using a B-mode image of the ROI and an elastography image of the ROI as inputs, and displaying the A/B ratio on a display device.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: February 6, 2024
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventor: Yelena Viktorovna Tsymbalenko
  • Patent number: 11890132
    Abstract: In one embodiment, a method is provided. The method includes transmitting a first set of ultrasound waves to determine whether there is fluid flow at a target area. The first set of ultrasound waves are transmitted at a first pulse repetition frequency. The method also includes determining whether there is fluid flow in a second area based on the first set of ultrasound waves. The second area is between the target area and an ultrasound probe. The method further includes transmitting a second set of ultrasound waves to detect fluid flow at the target area in response to determining that there is fluid flow in the second area between the target area and the ultrasound probe. The second set of ultrasound waves are directed towards the target area. The second set of ultrasound waves are transmitted at a second pulse repetition frequency.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: February 6, 2024
    Assignee: FUJIFILM SONOSITE, INC.
    Inventor: Thomas M. Duffy
  • Patent number: 11872069
    Abstract: A method includes a step of obtaining plural pieces of training data each of which includes a different radiographic image of a bone and each of which has a label indicating one of an overt fracture, an occult fracture and no fracture, a step of using the plural pieces of training data to pre-train a deep convolutional network (DCN) model to obtain a preliminary DCN model, a step of determining a subset of the plural pieces of training data by at least excluding any piece of training data that has a label indicating occult fracture, and a step of using the subset to train the preliminary DCN model to obtain a first DCN model.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 16, 2024
    Assignee: Chang Gung Memorial Hospital, Linkou
    Inventors: Chi-Hung Lin, Kevin C. Chung, Chang-Fu Kuo
  • Patent number: 11857289
    Abstract: A system and method for generating at least one optimized functional images of a lesion region of a subject is provided. The system includes a diffuse optical tomography (DOT) device, and a computing device. The DOT device is configured to acquire lesion functional data of an imaging volume including the lesion region of the breast and reference functional data from a corresponding imaging volume including healthy tissue within a contralateral breast. The computing device is programmed to generate at least one functional image of the breast by reconstructing the functional data at the plurality of regions including the lesion region and the surrounding adjacent background region. The functional images may be reconstructed by an optimization method regularized a preliminary estimate generated by applying a truncated pseudoinverse matrix of a weight matrix to the functional data. The optimized functional images relate to levels of hemoglobin at the voxels.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: January 2, 2024
    Assignee: Washington University
    Inventors: Quing Zhu, Mark Anastasio, Shihab Uddin
  • Patent number: 11759181
    Abstract: To provide a simpler implementation in which setting information is shared among a plurality of medical image capture apparatuses while maintaining intrinsic information each of the apparatuses has, in first memory in a first ultrasonic diagnostic apparatus UL1 are stored first data including first setting information set in the ultrasonic diagnostic apparatus UL1, and backup data for first intrinsic information included in the first data; in second memory in a second ultrasonic diagnostic apparatus UL2 is stored second data including second setting information set in the second ultrasonic diagnostic apparatus UL2; and once the second data is input via a network, a first processor rewrites the first data stored in the first memory into the second data, reads the first intrinsic information in the backup data, and rewrites the second intrinsic information into which the first intrinsic information has been rewritten, into the first intrinsic information in the backup data.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: September 19, 2023
    Assignee: General Electric Company
    Inventor: Seiji Funaya
  • Patent number: 11701092
    Abstract: A fully automated ultrasound apparatus includes a sensor or probe which can be initially manually attached to a side of the neck of a patient, an ultrasound interface to control the sensor and periodically acquire raw ultrasound data, a signal and image processing system to autonomously convert the raw ultrasound data into a measurement that is useful to physicians, and a display to relay the current measurements and measurement history to provide data trends. The sensor can include one or more ultrasound transducers built into a housing. A disposable component can serve to secure the sensor to the neck of the patient and to provide a coupling medium between the sensor and the skin of the patient.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: July 18, 2023
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Grant Kruger, Torben K. Becker, Nikhil Theyyunni, Ross Kessler, Bradley Plummer, Matthew Tafoya, Chelsea Tafoya, Steven E. Harte
  • Patent number: 11653898
    Abstract: An ultrasound diagnostic apparatus generates and displays an ultrasound image corresponding to reflected ultrasound reflected inside a subject. The ultrasound diagnostic apparatus includes a hardware processor that generates a B-mode image based on a reception signal corresponding to the reflected ultrasound, analyzes the B-mode image and determines an operation status of a treatment instrument used for treatment, and based on a result of the determination, displays a first display image including a current B-mode image and a second display image including a B-mode image obtained when the treatment instrument is in a non-operating state in such a manner that the first display image and second display image are aligned.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: May 23, 2023
    Assignee: KONICA MINOLTA, INC.
    Inventor: Kazuya Takagi
  • Patent number: 11602328
    Abstract: An ultrasound imaging system includes a transducer array (102) with a plurality of transducer elements (106) configured to transmit an ultrasound signal, receive echo signals produced in response to the ultrasound signal interacting with stationary structure and flowing structure, and generate electrical signals indicative of the echo signals. The system further includes a beamformer (112) configured to process the electrical signals and generate sequences, in time, of beamformed data. The system further includes a filter (118) configured to process the beamformed data, and remove or replace a set of frequency components based on a threshold, producing corrected beamformed data. The system further includes a flow processor (120) configured to estimate a velocity of flowing structure from the corrected beamformed data. The system further includes a rendering engine (224) configured to display the flow velocity estimate on a display (124).
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 14, 2023
    Assignee: B-K MEDICAL APS
    Inventors: Jacob Bjerring Olesen, Carlos Armando Villagomez-Hoyos, Jorgen Arendt Jensen, Matthias Bo Stuart
  • Patent number: 11442128
    Abstract: During the delivery of thermal therapy, the measured temperature at each pixel in a cross-sectional temperature slice of a multi-pixel thermal image is compared to a maximum temperature limit. When the measured temperature of a pixel is higher than the maximum temperature limit for a predetermined number of consecutive cross-sectional temperature slices, the pixel is masked if the absolute value of the average difference between the measured temperature at the pixel and the measured temperatures at the pixel's neighbors is greater than a maximum temperature variation. The measured temperature of the masked pixel is ignored in subsequent cross-sectional temperature slices until the delivery of thermal therapy is complete.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: September 13, 2022
    Assignee: Profound Medical Inc.
    Inventors: Alexandre Bigot, Benjamin Yat-Chung Leung
  • Patent number: 11324487
    Abstract: An ultrasound diagnostic apparatus has: an image acquiring unit that transmits/receives an ultrasound beam from an ultrasound probe to acquire an ultrasound image; a part probability calculating unit that calculates, for the ultrasound image acquired in accordance with a first measurement method, a probability that a part included in the ultrasound image is a specific part from at least one of an orientation angle of the ultrasound probe or an analysis result of the ultrasound image; and a measurement method changing unit that changes, when the probability is greater than or equal to a threshold value, the first measurement method to a second measurement method for identifying the part for which the probability has been calculated, in which an ultrasound image is further acquired by using the second measurement method.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: May 10, 2022
    Assignee: FUJIFILM Corporation
    Inventor: Tsuyoshi Matsumoto
  • Patent number: 11311277
    Abstract: An ultrasound diagnostic apparatus has: an image acquiring unit that transmits/receives an ultrasound beam from an ultrasound probe to acquire an ultrasound image; a part probability calculating unit that calculates, for the ultrasound image acquired in accordance with a first imaging condition, a probability that a part included in the ultrasound image is a specific part from at least one of an orientation angle of the ultrasound probe or an analysis result of the ultrasound image; and an imaging condition changing unit that changes, when the probability is greater than or equal to a threshold value, the first imaging condition to a second imaging condition for identifying the part for which the probability has been calculated, in which an ultrasound image is further acquired by using the second imaging condition.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: April 26, 2022
    Assignee: FUJIFILM Corporation
    Inventor: Tsuyoshi Matsumoto
  • Patent number: 11272842
    Abstract: A system for maintaining coherence of ultrasound waves emitted by multiple transducer arrays includes multiple retention arms, each for receiving one of the transducer arrays; a connecting frame for receiving and mechanically retaining the arms in fixed angular relation to each other; and a processor configured to determine relative locations of the transducer arrays with respect to one another and the connecting frame; determine a location of the connecting frame relative to an anatomic region of interest; determine a spatial arrangement of the transducer elements in each transducer array with respect to the anatomic region of interest; and adjust a transmission configuration of the transducer elements in the transducer arrays to achieve a desired focusing property with respect to the anatomic region of interest while maintaining coherence therebetween.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: March 15, 2022
    Assignee: INSIGHTEC, LTD.
    Inventor: Yoav Levy
  • Patent number: 11185310
    Abstract: An ultrasound imaging apparatus includes: an image processor configured to generate an ultrasound image based on an ultrasound echo signal; a display; and a main controller configured to detect a liver area and a kidney area in the ultrasound image, extract a border line between the liver area and the kidney area, automatically establish a region of interest of the liver and a region of interest of the kidney based on the border line, obtain a diagnostic parameter for the region of interest of the liver and a diagnostic parameter for the region of interest of the kidney, and control the display to display information about the diagnostic parameter for the region of interest of the liver and the diagnostic parameter for the region of interest of the kidney.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: November 30, 2021
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Gun Woo Lee, SeWon Kim, JongHyon Yi, ChoongHwan Choi
  • Patent number: 11123042
    Abstract: An embodiment of the invention provides a method to measure fluid within a body cavity where data is received with an interface (210), the data being received from an ultrasound transducer. A three-dimensional sonographic image is generated with an image generator (220) connected to the interface (210), the three-dimensional sonographic image being generated from the data from the ultrasound transducer. The body cavity is identified in the three-dimensional sonographic image with an image processor (230) connected to the image generator (220); and, an area of fluid in the body cavity in the three-dimensional sonographic image is identified with the image processor (230). The volume of the area of fluid is calculated using the three-dimensional sonographic image and a stacked crescents process, a spherical fill process, a convex hull process, and/or a triangulation process.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: September 21, 2021
    Assignee: The Government of the United States as Represented by the Secretary of the Army
    Inventors: Shane B. Anderson, Lorne H. Blackbourne, Mariya Gusman, Jose Salinas