Patents Examined by Anh-Khoa N Dinh
  • Patent number: 11406828
    Abstract: Methods and systems are provided for multi-channel and/or variable neurostimulation. In one example, overlapping of stimulation events between a plurality of pulse train provided by the neurostimulation system is determined, and one or more parameters of one or more of the plurality of pulse trains are adjusted so as to reduce or avoid overlapping of stimulation events of the plurality of pulse train. The one or more parameters may include a start time, a frequency, and a pulse shape.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: August 9, 2022
    Assignee: ONWARD MEDICAL N.V.
    Inventors: Edoardo Paoles, Mathieu Scheltienne, Jeroen Tol
  • Patent number: 11400293
    Abstract: A medical device system and method are disclosed for treating obstructive sleep apnea. The system includes a pulse generator and a medical electrical lead including multiple electrodes carried by a distal portion of an elongated lead body. The method includes advancing the distal portion within protrusor muscle tissue below the oral cavity and delivering electrical stimulation pulses via the electrodes to sustain a protruded state throughout a delivery time period to sustain a protruded state of a patient's tongue throughout the therapy delivery time period. The therapy delivery time period may span multiple respiration cycles.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: August 2, 2022
    Assignee: MEDTRONIC, INC.
    Inventor: Avram Scheiner
  • Patent number: 11395916
    Abstract: Tumor treating fields (TTFields) can be delivered to a subject's body at higher field strengths by switching off one or more electrode elements that are overheating without switching off other electrode elements that are not overheating. This may be accomplished using a plurality of temperature sensors, with each of the temperature sensors positioned to sense the temperature at a respective electrode element; and a plurality of electrically controlled switches, each of which is wired to switch the current to an individual electrode element on or off. A controller input signals from the temperature sensors to determine the temperature at each of the electrode elements, and controls the state of the control input of each of the electrically controlled switches to selectively switch off the current or adjusted the duty cycle at any electrode element that is overheating.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 26, 2022
    Assignee: Novocure GmbH
    Inventors: Yoram Wasserman, Michael Krinitsky, Sergey Kirilov, Michael Shtotland, Victor Kaikov
  • Patent number: 11376434
    Abstract: Devices, systems, and techniques are configured for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: July 5, 2022
    Assignee: Medtronic, Inc.
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L. Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Patent number: 11376421
    Abstract: Example neurostimulation induced medicine devices and methods of use are described herein. An example endotracheal device can include an elongate tubular member having a proximal end and a distal end, an inflatable cuff arranged between the proximal and distal ends of the elongate tubular member, and an electrode array disposed in proximity to an exterior surface of the inflatable cuff. The inflatable cuff can be configured to expand to contact a subject's tracheal wall. Additionally, the electrode array can include a plurality of flexible electrodes, where a set of the flexible electrodes anatomically align with a region of the subject's tracheal wall for selectively targeting vagus nerve activity.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 5, 2022
    Assignee: The Methodist Hospital System
    Inventors: Eugene V. Golanov, Gavin W. Britz, Philip John Horner, Tatiana Wolfe
  • Patent number: 11376431
    Abstract: An exemplary sound processor within a cochlear implant system directs a cochlear implant to concurrently apply first and second pulses by way of first and second electrodes disposed on an electrode lead configured to be inserted into a cochlea of a patient. The first and second pulses have substantially equal magnitudes and opposite phases such that the application of the first and second pulses forms a dipole that generates a field. The sound processor further directs the cochlear implant to detect, by way of a third electrode disposed on the electrode lead, an energy magnitude of the field that reflects from cochlear tissue located within the field. Based on a difference between the detected energy magnitude of the field and a baseline energy magnitude of the field, the sound processor determines a proximity of the electrode lead to the cochlear tissue. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: July 5, 2022
    Assignee: Advanced Bionics AG
    Inventors: Kanthaiah Koka, Leonid M. Litvak
  • Patent number: 11369790
    Abstract: This application discloses an improved approach for delivering alternating electric fields (e.g., TTFields) at a therapeutically effective strength to a target region of the spinal anatomy. In some embodiments, first and second sets of electrode elements are positioned with their centroids adjacent to upper and lower portions of the person's spine, respectively. In other embodiments, a first set of electrode elements is positioned with its centroid on an upper surface of the person's head, and a second set of electrode elements is positioned with its centroid adjacent to the person's spine (e.g., below the L3 vertebrae). Applying an AC voltage between the first and second sets of electrode elements generates a generally vertical field in the target region at levels that are not achievable using other layouts for positioning the electrode elements on the subject's body. These configurations are particularly useful for preventing and/or treating metastases.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: June 28, 2022
    Assignee: Novocure GmbH
    Inventors: Zeev Bomzon, Ariel Naveh, Ofir Yesharim
  • Patent number: 11364383
    Abstract: A system for electrically stimulating a user includes an electrode assembly, a control module, an electrode usage module, a communication module, a stimulus generator, and a client application. Additionally or alternatively, the system 100 can include any or all of: a head apparatus, a power source, a sensor subsystem, an electrical coupling subsystem, a user device, and/or any other suitable component(s). A method for electrically stimulating a user includes reading a tag of the electrode assembly, applying electrical stimulation to a user, determining and/or updating an electrode usage, and triggering an action based on the tag. Additionally or alternatively, the method can include any or all of: coupling an electrode assembly with a head apparatus, receiving an input from a user to initiate an electrical stimulation session, transmitting tag information, updating the tag, applying electrical stimulation to a user, verifying tag information, and/or any other suitable process(es).
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: June 21, 2022
    Assignee: Halo Neuro, Inc.
    Inventors: Brett Wingeier, Rob Helvestine, Anne Swanberg, Daniel Chao
  • Patent number: 11357992
    Abstract: A connector and lead (or other elongated body) can produce a tactile sensation that indicates alignment between connector contacts of the connector and the terminals on the lead (or other elongated body). For example, a terminal or retention sleeve of the lead (or other elongated body) may include an indented circumferential groove that interacts with a connector contact or retention contact of the connector to produce the tactile sensation. As another example, one or more terminals or spacers may have a larger diameter than adjacent spacers or terminals to interact with a connector contact to produce the tactile sensation.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 14, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ranjan Krishna Mukhari Nageri, Peter J. Yoo, Darragh McDermott
  • Patent number: 11357991
    Abstract: An electronic medical device includes a first portion, with the first portion including a first insertion hole and an external surface. The first insertion hole is to removably receive an elongate element. The external surface of the first portion comprises a first position indicator, which is located to be visibly juxtaposed relative to a first operative element of the elongate element when the elongate element is fully inserted in the first insertion hole. In some instances, the position indicator may serve a dual function as a vent.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: June 14, 2022
    Assignee: Inspire Medical Systems, Inc.
    Inventors: Kevin Verzal, John Rondoni
  • Patent number: 11357990
    Abstract: A method programs an implantable medical device to configure the implantable medical device for stimulating neural tissue by at least one electrode. The method includes: performing, by the implantable medical device, an evoked compound action potential (eCAP) threshold search by stimulating the neural tissue with test stimulation pulses; determining, based on the eCAP threshold search, an eCAP threshold amplitude and a coupling factor that is indicative of a coupling between the at least one electrode and the neural tissue; and generating a first set of stimulation parameters containing at least a stimulation amplitude that is determined in dependence on the eCAP threshold amplitude and the coupling factor.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: June 14, 2022
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Andrew B. Kibler, Lauren Kraiter, Larry Stotts
  • Patent number: 11357976
    Abstract: An extravascular neural interface is disclosed including a device containing electrodes for neurostimulation of a vessel. The devices are housed in flexible substrates forming two flaps, an inner flap having a spinal portion for routing leads/conductors into the device for connection to the electrodes and an outer flap that overlaps the inner flap. The inner flap supports and positions the electrodes to be inward facing, i.e., extravascular designs. The electrodes may be circular or elliptical and include a plurality of wings for securing the electrodes within a flap.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: June 14, 2022
    Assignee: Galvani Bioelectronics Limited
    Inventors: Faisal Zaidi, Sebastien Ouchouche
  • Patent number: 11357972
    Abstract: Methods and systems for alleviating disorders and complications associated with autonomic nervous system dysfunction. The approach generally includes measuring heart rate signals from a subject to measure heart rate variability and determine a heart rate variability threshold, determining that the subject is experiencing autonomic nervous system dysfunction, and alerting the subject to stimulate the auricular branch of the vagus nerve with an ear device.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 14, 2022
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Sunny Po, Benjamin Scherlag, Stavros Stavrakis, Paul Garabelli, David Albert
  • Patent number: 11350874
    Abstract: A device that may include, or communicate with, sensors such as an electrocardiogram (ECG) sensor, an accelerometer, and/or a photoplethysmograph (PPG) detects sleep-disordered breathing (SDB) events of a patient based on signals from the sensors. The device may have a processor configured to make the detection(s). In an example, the processor may access a memory with processor control instructions. The instructions may be adapted to configure the processor to carry out the detection methodology. The method may include analysing an ECG data of the patient from a signal generated by the ECG sensor, pulse oximetry data of the patient from a signal generated by the PPG, and a three-dimensional (3D) accelerometry data of the patient from a signal generated by the accelerometer to detect the SDB events. The device and methods may be used for screening, diagnosis and monitoring of respiratory disorders.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: June 7, 2022
    Inventor: Faizan Javed
  • Patent number: 11351367
    Abstract: A device and a method for stimulating skin regeneration is described which allows exploiting the combined action of the surface vasculature (given by the action of the vacuum) and of the cellular regeneration (given by the electromagnetic field generated by a capacitive system) combined with the skin electrostimulation applied, in this case, so as to amplify the biological effect of the electromagnetic field.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 7, 2022
    Inventor: Maurizio Busoni
  • Patent number: 11344722
    Abstract: In some embodiments, systems and methods can include a wearable device with an electrically conductive skin interface that excites the underlying nerves from a transcutaneous surface stimulator. The device may be sized for a range of user sizes with stimulation electrodes positioned to target the appropriate nerves, such as the saphenous and/or posterior tibial nerves. Transcutaneous afferent stimulation of one, two, or more peripheral nerves can modulate a brain or spinal pathway associated with bladder function.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: May 31, 2022
    Assignee: CALA HEALTH, INC.
    Inventors: Serena HanYing Wong, Kathryn H. Rosenbluth, Samuel Richard Hamner, Peter Lin, Benjamin Pless
  • Patent number: 11344358
    Abstract: A method includes depositing within a predetermined region of a target tissue with a plurality of dopant particles. The method also includes focusing a laser beam to a focal region that overlaps with at least a portion of the predetermined region. The focal region includes at least a first dopant particle of the plurality of dopant particles. The method further includes adjusting a first parameter of the laser beam to generate plasma within a plasma volume comprising the first dopant particle.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: May 31, 2022
    Assignee: Avava, Inc.
    Inventors: Irina Erenburg, Jayant Bhawalkar, Charles Holland Dresser, Joseph Ting
  • Patent number: 11338136
    Abstract: A cranial nerve control device includes: goggles worn on a patient head; a functional electric stimulator adapted to apply peripheral nerve stimulation to a patient; a plurality of module guides provided to the goggles; a functional electric stimulator controller adapted to control the functional electric stimulator; a transcranial current stimulator-combined near-infrared spectroscopy measurement module controller adapted to control the transcranial current stimulator-combined functional near-infrared spectroscopy measurement module; and a simulation device connected to both the transcranial current stimulator-combined near-infrared spectroscopy measurement module controller and the functional electric stimulator to provide feedback of a transcranial current stimulation control signal to the transcranial current stimulator and feedback of a functional electrical stimulation control signal to the functional electric stimulator while monitoring the patient brain activity.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: May 24, 2022
    Assignee: CYBERMEDIC CO., LTD.
    Inventors: Ho Choon Jeong, Hyun Hee Lee, Sang Sea Lee, Myoung Choon Kim
  • Patent number: 11331496
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including an electrical feedthrough assembly mounted on a housing, is described. An electronics compartment of the housing can contain an electronics assembly to generate a pacing impulse, and the electrical feedthrough assembly can include an electrode tip to deliver the pacing impulse to a target tissue. A monolithically formed electrode body can have a pin integrated with a cup. The pin can be electrically connected to the electronics assembly, and the cup can be electrically connected to the electrode tip. Accordingly, the biostimulator can transmit the pacing impulse through the monolithic pin and cup to the target tissue. The cup can hold a filler having a therapeutic agent for delivery to the target tissue and may include retention elements for maintaining the filler at a predetermined location within the cup.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 17, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11331467
    Abstract: Disclosed herein is a catheter pump that includes an expandable cannula and an impeller system. The expandable cannula defines a blood flow channel and includes an impeller blade zone, an inlet zone, and an outlet zone. The catheter pump further includes an impeller system including an impeller body, the impeller system movable relative to the expandable cannula along a longitudinal axis of the catheter pump. The catheter pump is selectively transitionable between a separated configuration in which the impeller body is axially spaced from the expandable cannula along the longitudinal axis, and an operational configuration in which the impeller body is positioned within the impeller blade zone of the expandable cannula.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 17, 2022
    Assignee: TC1 LLC
    Inventors: Alexander King, David Panus, Tracee Eidenschink, John Pocrnich, Kevin Griffin