Patents Examined by Ankit D Tejani
  • Patent number: 11969158
    Abstract: A catheter system includes a catheter, an introducer sheath, and a tubular plug. The catheter comprises an elongate body having an expandable medical device coupled with a distal end thereof. The introducer sheath comprises an elongate body defining a lumen therein. The introducer sheath is disposed over the catheter to form a gap therebetween. The tubular plug comprises an elongate body and extends through the lumen of the introducer sheath. The tubular plug is disposed between the catheter and the introducer sheath to occlude the gap. Further, the tubular plug is releasably fixed relative to the introducer sheath such that the tubular plug is removable from the lumen to allow the expandable medical device to pass therethrough.
    Type: Grant
    Filed: May 30, 2023
    Date of Patent: April 30, 2024
    Assignee: TC1 LLC
    Inventors: Paul Muller, Keif Fitzgerald, Ted Su, Michael Butler
  • Patent number: 11969254
    Abstract: When generating anatomical maps (e.g., anatomical geometries and/or electrophysiology maps), it can be desirable to analyze whether or not a collected data point was collected from a region of interest. During an electrophysiology study, for example, an electroanatomical mapping system collects electrophysiology data points, each including an electrogram signal. By defining both a window of interest and a window of exclusion within the electrogram signal, the electroanatomical mapping system can analyze collected data points to determine whether or not they should be included in a map. In particular, the electroanatomical mapping system can compare the electrophysiology signal within the window of interest and the window of exclusion with respect to at least one signal parameter and add the data point to the map if the comparison satisfies at least one corresponding inclusion criterion. Applicable signal parameters include maximum peak-to-peak voltage, conduction velocity, and electrogram morphology.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: April 30, 2024
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Craig Markovitz, Jan O. Mangual-Soto, Chunlan Jiang, Louis-Philippe Richer, Cyrille Casset
  • Patent number: 11963800
    Abstract: A diagnostic electrocardiogram system employing an electrode lead system (40) for generating one or more electrode signals indicative of electrical activity of a subject heart (10). The diagnostic electrocardiogram system further employs a diagnostic electrocardiograph (50) coupled to the electrode lead system (40) for communicating (e.g., listing, displaying and/or printing a subject electrocardiogram (20) and one more diagnostic electrocardiograms (30) designated as a morphology match to the subject electrocardiogram (20). The subject electrocardiogram (20) includes one or more interpretations of ECG features derived from tire electrical activity of the subject heart (10) as indicated by tire electrode signal(s) (e.g., an algorithmic interpretation and/or an electrocardiographer interpretation of the subject electrocardiogram (20)). The diagnostic electrocardiogram(s) includes one or more diagnoses of ECG features derived from recorded electrical activity of diagnosed heart(s) (11) (e.g.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: April 23, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Richard Earl Gregg, Saeed Babaeizadeh
  • Patent number: 11957470
    Abstract: An organ evaluation device, system, or method is configured to receive electrophysiological data from a patient or model organism and integrates the data in a computational backend environment with anatomical data input from an external source, spanning a plurality of file formats, where the input parameters are combined to visualize and output current density and/or current flow activity having ampere-based units displayed in the spatial context of heart or other organ anatomy.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: April 16, 2024
    Assignee: Genetesis, Inc.
    Inventors: Vineet Erasala, Peeyush Shrivastava, Emmanuel T. Setegn
  • Patent number: 11950972
    Abstract: Systems, devices and methods for advanced electrode management in neurological monitoring applications include receiving sockets configured to receive connectors having groups of electrodes. The physician is not required to manually map each electrode with its corresponding input channel. Electrodes are coupled to the corresponding input channels in groups through connectors having a unique identification (ID). The system is configured to read the unique ID of each connector and establish its identity. Based on the ID, the system configures itself to automatically correlate or associate each electrode with its corresponding input channel when the connectors are first inserted into the receiving sockets, and again if the connectors are removed and re-inserted into different positions in the receiving sockets, to insure the electrodes are always mapped to the same input channels.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: April 9, 2024
    Inventors: John A. Cadwell, Patrick Scott Jensen, Brandon Vazquez, Wayne Dearing
  • Patent number: 11950873
    Abstract: A medical instrument includes cable pairs respectively wound around input spindles and connected to actuate degrees of freedom of an instrument shaft structure. The cables may connect so that rotating the input spindles actuates corresponding degrees of freedom. First pulleys in the instrument may receive first cables from the input spindles and redirect the first cables toward the instrument shaft, and second pulleys may receive second cables from the input spindles and redirect the second cables toward the instrument shaft. In one configuration, the first and second pulleys are respectively mounted at first and second levels, and the second pulleys redirect the second cables through the first level. Additionally or alternatively, one level of cables may cross while the other level of cables does not.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: April 9, 2024
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Bram Gilbert Antoon Lambrecht, S. Christopher Anderson, Ladd T. Johnson
  • Patent number: 11951309
    Abstract: A method of controlling a stimulator by using image data includes receiving coordinate data of a plurality of stimulus units from a user terminal or a stimulator connected to the user terminal, obtaining, from a hospital terminal, primary image data including coordinate data of a target area estimated to be an affected area of a user, generating matching data by matching the coordinate data of the plurality of stimulus units to the primary image data, generating stimulus intensity control data capable of controlling stimulus intensities of the plurality of stimulus units by using the matching data, and transmitting the stimulus intensity control data to the user terminal.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: April 9, 2024
    Assignee: Samsung Life Public Welfare Foundation
    Inventor: Gyu Ha Ryu
  • Patent number: 11944817
    Abstract: Variable amplitude signals for neurological therapy, and associated systems and methods are disclosed. A representative method includes activating automatic delivery of an electrical therapy signal to a patient's spinal cord region at a frequency in a frequency range between 1.5 kHz and 100 kHz, via at least one signal delivery contact carried by an implanted signal delivery device. The delivery can include repeatedly and automatically delivering the electrical therapy signal at each of multiple therapy signal amplitudes to the at least one signal delivery contact, without the therapy signal generating paresthesia in the patient. The foregoing process can be used as a screening tool to screen responders from non-responders in the context of a non-paresthesia-generating therapy, and/or can be used during long-term treatment, for example, for chronic pain.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: April 2, 2024
    Assignee: Nevro Corp.
    Inventor: Chris Dawson
  • Patent number: 11938321
    Abstract: An antenna assembly includes a metal layer configured to emit linearly polarized electromagnetic energy to a receiving antenna implanted underneath a subject's skin; and a feed port configured to connect the antenna assembly to a signal generator such that the antenna assembly receives an input signal from the signal generator and then transmits the input signal to the receiving dipole antenna, wherein the antenna assembly is less than 200 um in thickness, and wherein the metal layer is operable as a dipole antenna with a reflection ratio of at least 6 dB, the reflection ratio corresponding to a ratio of a transmission power of the antenna assembly in transmitting the input signal and a reflection power seen by the antenna assembly resulting from electromagnetic emission of the input signal.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: March 26, 2024
    Assignee: CURONIX LLC
    Inventors: Chad David Andresen, Richard LeBaron, Laura Tyler Perryman
  • Patent number: 11931564
    Abstract: The present disclosure is directed towards devices, methods, and related systems that are minutely-invasively delivered to the brain parenchyma, subdural or subarachnoid space where the devices, methods, and systems directly interface with central nervous system media (i.e., fluid or tissue) enabling detecting, sensing, measuring, stimulating, altering and/or modulating of the media or tissue surfaces.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: March 19, 2024
    Assignee: VONOVA INC.
    Inventor: Jose Miguel Morales
  • Patent number: 11931573
    Abstract: The present disclosure can provide a muscular stimulation apparatus and a system including the same, which apply a voltage through at least one electric stimulation pad that is in close contact with at least one body part of a user, and simultaneously or selectively adjusts a resistance applied to an anode (+) or a cathode (?) of at least one electrode connected to the electric stimulation pad.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: March 19, 2024
    Assignee: alimolistudio LC.
    Inventor: Won Seok Choi
  • Patent number: 11931577
    Abstract: Devices for controlling spinal cord modulation for inhibiting pain, and associated systems and methods, including controllers for automated parameter selection are disclosed. A particular embodiment includes receiving a first input corresponding to a location of a signal delivery device implanted in a patient, establishing a positional relationship between the signal delivery device and an anatomical feature of the patient, receiving a second input corresponding to a medical indication of the patient, and, based at least in part on the positional relationship and the indication, automatically identifying a signal delivery parameter in accordance with which a pulsed electrical signal is delivered to the patient via the signal delivery device.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: March 19, 2024
    Assignee: NEVRO CORP.
    Inventor: Jon Parker
  • Patent number: 11931583
    Abstract: A neurostimulation system comprises a control system configured to monitor a patient receiving neurostimulation therapy. The neurostimulation therapy has a stimulation cycle comprising a stimulation ON period, in which the patient is receiving neurostimulation, and a stimulation OFF period, in which the patient is not receiving neurostimulation. The control system is programmed to receive electrocardiogram (ECG) data from the patient receiving the neurostimulation therapy. The control system is further programmed to monitor a heart rate of the patient based on the ECG data over at least one stimulation cycle of the neurostimulation therapy. The control system is further programmed to generate an indication of signal stability to be displayed to a user based on the received ECG data.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: March 19, 2024
    Assignee: LivaNova USA, Inc.
    Inventors: Imad Libbus, Scott R. Stubbs, Bruce H. KenKnight, Scott Mazar, Badri Amurthur
  • Patent number: 11925476
    Abstract: A biological signal detection apparatus includes a neck band worn by a user along a circumferential direction of a neck of the user and a pair of sensors mounted to both ends of the neck band to detect a biological signal. Each sensor includes a conductive cloth with a planar or substantially planar shape, a main body on which the conductive cloth is set, a frame body that holds a periphery of the conductive cloth between the main body and the frame body, and an input terminal provided on a surface of the main body that opposes the frame body.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: March 12, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Toru Shimuta
  • Patent number: 11918725
    Abstract: A dual lumen coaxial cannula, assembly includes a first infusion tube having a first elongate body defining a first lumen therethrough and a second drainage tube co-axially aligned with the first infusion tube and having a second elongate body with a second lumen defined by a space between the first infusion tube and second drainage tube. A connector is removably attached to the first infusion tube and the second drainage tube for coupling the dual lumen coaxial cannula to an extracorporeal blood circuit. The first infusion tube and the second drainage tube include a plurality of infusion and drainage apertures, respectively, provided at the distal end and extending through the sidewall of the first infusion tube and the drainage tube, respectively.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: March 5, 2024
    Assignee: CardiacAssist, Inc.
    Inventors: Patrick A. Kelly, Patrick E. Lutz, Robert G. Svitek, Jerry Stokes
  • Patent number: 11918381
    Abstract: This relates to a monitoring system capable of measuring a plurality of vital signs. The monitoring system can include a plurality of sensors including, but not limited to, electrodes, piezoelectric sensors, temperature sensors, and accelerometers. The monitoring system can be capable of operating in one or more operation modes such as, for example: capacitance measurement mode, electrical measurement mode, piezoelectric measurement mode, temperature measurement mode, acceleration measurement mode, impedance measurement mode, and standby mode. Based on the measured values, the monitoring system can analyze the user's sleep, provide feedback and suggestions to the user, and/or can adjust or control the environmental conditions to improve the user's sleep. The monitoring system can further be capable of analyzing the sleep of the user(s) without directly contacting or attaching uncomfortable probes to the user(s) and without having to analyze the sleep in an unknown environment (e.g., a medical facility).
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: March 5, 2024
    Assignee: Apple Inc.
    Inventors: Shahrooz Shahparnia, Erno H. Klaassen
  • Patent number: 11918809
    Abstract: A system and method for the automatic stimulation of a vagus nerve for post-stroke rehabilitation is disclosed. The system includes an application subsystem having an electrode positioned to stimulate the vagus nerve and coupled to a user outside of a surgical setting. The system also includes a waveform generator communicatively coupled to the electrode, and a triggering subsystem including a receiver configured to detect the presence of a tag. The triggering subsystem is communicatively coupled to waveform generator and is configured to automatically trigger the stimulation of the vagus nerve upon detecting the presence of the tag. The tag is located proximate a rehabilitation context such that the tag is detected when the user is using the rehabilitation context, resulting in the vagus nerve of the user being automatically stimulated by the electrode in response to the user's post-stroke rehabilitation training.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: March 5, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Vishvak Rangarajan, Devin Dhooge, Kiryl Sheleg, Nicholas Holmes, Jeffrey Kleim, Bradley Greger, Shivanshi Shukla
  • Patent number: 11918726
    Abstract: A blood pump for supporting a patient's heart includes a flow cannula having a distal portion including a distal end and a proximal portion including a proximal end opposite the distal end, the distal end of the flow cannula configured to be connected to the patient's heart or a blood vessel to establish fluid communication between the blood pump and the patient's heart and blood vessel, respectively. The flow cannula further includes an intermediate portion attached to the distal portion and the proximal portion, wherein the intermediate portion allows twisting thereof with a lower force than the distal portion and the proximal portion. The intermediate portion can be fully occluded by twisting it. At least a portion of the intermediate portion either alone or in combination with the distal portion is adapted to be permanently attached to the patient's heart or a blood vessel.
    Type: Grant
    Filed: January 12, 2023
    Date of Patent: March 5, 2024
    Assignee: ABIOMED EUROPE GMBH
    Inventors: Thorsten Siess, Gerd Spanier, Walid Aboulhosn
  • Patent number: 11911187
    Abstract: Presented are concepts for monitoring a health status of a subject. One such concept employs determining a trend in a health parameter of the subject based input data relating to a plurality of event occurrences for the subject. One or more irregularities are detected in the determined trend and health status of the subject is then determined based on the detected irregularities.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: February 27, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Warner Rudolph Theophile Ten Kate, Mariana Nikolova-Simons, Enrique Antonio Gil Ponce, Josef Heribert Baldus
  • Patent number: 11903681
    Abstract: Described herein are systems, devices, and methods for cardiac monitoring. In particular, the systems, devices, and methods described herein may be used to conveniently sense the presence of an intermittent arrhythmia in an individual. The systems, devices, and methods described herein may be further configured to sense an electrocardiogram.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: February 20, 2024
    Assignee: ALIVECOR, INC.
    Inventors: David E. Albert, Omar Dawood, Ravi Gopalakrishnan, Fei Wang, Euan Thomson, Iman Abuzeid