Patents Examined by Anne Marie S. Wehbe
  • Patent number: 11660337
    Abstract: The present invention discloses a combination of vaccine strains for treating, preventing, relieving or controlling Canine Distemper, Canine Parvovirus Enteritis and Canine Infectious Hepatitis, comprising: Canine Distemper virus vaccine strain with the microorganism deposition accession number CGMCC No. 19397, Canine Parvovirus vaccine strain with the microorganism deposition accession number CGMCC No. 19398 and Canine Infectious Hepatitis virus vaccine strain with the microorganism deposition accession number CGMCC No. 19396. The three vaccine strains of the combination of vaccine strains are low in toxicity and good in immunogenicity. The present invention further discloses a live vaccine composition using the above-mentioned combination of vaccine strains as immunogen. The vaccine composition is safe and effective.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: May 30, 2023
    Assignee: Liaoning Yikang Biological Corporation Limited
    Inventors: Fengyan Li, Xiuwei Shu, Bo Wang, Yiping Wang, Wenyou Luo, Shenglei Chen, Yanxia Liu
  • Patent number: 11648267
    Abstract: Disclosed herein are methods and compositions for inactivating CCR-5 genes, using zinc finger nucleases (ZFNs) comprising a zinc finger protein and a cleavage domain or cleavage half-domain. Polynucleotides encoding ZFNs, vectors comprising polynucleotides encoding ZFNs, such as adenovirus (Ad) vectors, and cells comprising polynucleotides encoding ZFNs and/or cells comprising ZFNs are also provided.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: May 16, 2023
    Assignee: Sangamo Therapeutics, Inc.
    Inventors: Dale Ando, Michael C. Holmes, Gary Ka Leong Lee
  • Patent number: 11624054
    Abstract: The present invention is directed to purified preparations of dermal mesenchymal stem cells that are characterized by the cell surface expression of the ABCB5 P-glycoprotein. The cells may be used for any purpose that mesenchymal stem cells from other course are used. For instance they may be administered to treat an organ transplant recipient to improve allograft survival or as a treatment to patients with autoimmune diseases such as multiple sclerosis and rheumatoid arthritis.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: April 11, 2023
    Assignees: The Brigham and Women's Hospital, Inc., Children's Medical Center Corporation
    Inventor: Markus H. Frank
  • Patent number: 11607427
    Abstract: A method of radiation-free hematopoietic stem cell (HSC) transplantation comprises administering to a mammalian subject one or two doses of 2 to 10 mg/kg body weight of a purine base analog, such as 6TG as a pre-conditioning step. The method further comprises engrafting into the subject hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient donor HSCs within 48 to 72 hours of the pre-conditioning step; and administering to the subject about 1 to 5 mg/kg of the purine base analog every two to four days for two to eight weeks following the engrafting step. The method is performed in the absence of pre-conditioning via radiation. The subject is therefore not treated with myeloablative radiation in preparation for transplantation, and thus the subject is free of myeloablative radiation-induced toxicity.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 21, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Noriyuki Kasahara, Robert H. Schiestl, Katrin Hacke, Akos Szakmary, Gay M. Crooks
  • Patent number: 11602136
    Abstract: A transgenic non-human animal is provided. In certain embodiments, the animal comprises a genome comprising an immunoglobulin heavy chain locus comprising: a) a transcribed gene encoding a fusion protein comprising, from N-terminus to C-terminus: i. a scaffold comprising a first binding domain; and ii. a heavy chain constant region operably linked to the scaffold; wherein the scaffold is capable of specifically binding to a target in the absence of additional polypeptides; and b) a plurality of pseudogenes that are operably linked to the transcribed gene and that donate, by gene conversion, nucleotide sequence to the part of the transcribed gene that encodes the binding domain.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 14, 2023
    Assignee: CRYSTAL BIOSCIENCE INC.
    Inventor: William Don Harriman
  • Patent number: 11584927
    Abstract: This disclosure relates to a chimeric antigen receptor for binding with a target antigen. The chimeric antigen receptor comprises at least one antigen specific targeting region including a multispecific antibody evolved from a wild-type antibody or a fragment thereof and having at least one of: (a) a decrease in activity in the assay at the normal physiological condition compared to the wild-type antibody or the fragment thereof, and (b) an increase in activity in the assay under the aberrant condition compared to the wild-type antibody or the fragment thereof. A method for using the chimeric antigen receptor and cytotoxic cells for cancer treatment is also provided. A method for producing the chimeric antigen receptor is also provided.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: February 21, 2023
    Assignee: BioAtla, Inc.
    Inventor: Jay M. Short
  • Patent number: 11559049
    Abstract: Described are transgenic, non-human animals comprising a nucleic acid encoding an immunoglobulin light chain, whereby the immunoglobulin light chain is human, human-like, or humanized. The nucleic acid is provided with a means that renders it resistant to DNA rearrangements and/or somatic hypermutations. In one embodiment, the nucleic acid comprises an expression cassette for the expression of a desired molecule in cells during a certain stage of development in cells developing into mature B cells. Further provided is methods for producing an immunoglobulin from the transgenic, non-human animal.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: January 24, 2023
    Assignee: Merus N.V.
    Inventors: Ton Logtenberg, Mark Throsby, Robert A. Kramer, Rui D. Pinto, Cornelis A. De Kruif, Erwin Houtzager
  • Patent number: 11559050
    Abstract: Mice, embryos, cells, and tissues having a restricted immunoglobulin heavy chain locus and an ectopic sequence encoding one or more ADAM6 proteins are provided. In various embodiments, mice are described that have humanized endogenous immunoglobulin heavy chain loci and are capable of expressing an ADAM6 protein or ortholog or homolog or functional fragment thereof that is functional in a male mouse. Mice, embryos, cells, and tissues having an immunoglobulin heavy chain locus characterized by a single human VH gene segment, a plurality of human DH gene segments and a plurality of human JH gene segments and capable expressing an ADAM6 protein or ortholog or homolog or functional fragment thereof are also provided.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: January 24, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Lynn Macdonald, Sean Stevens, Andrew J. Murphy, Margaret Karow, John McWhirter
  • Patent number: 11541130
    Abstract: The present invention provides compositions, systems, kits, and methods for expression of one or more biomolecules in a subject, human or non-human mammal, (e.g., at therapeutic levels for the extended periods of time required to produce therapeutic effects). In certain embodiments, compositions, systems, kits, and methods are provided that comprise a first composition comprising polycationic structures (e.g., empty cationic liposomes, cationic micelles, cationic emulsions, or cationic polymers) and a second composition comprising expression vectors (e.g., non-viral expression vectors not associated with liposomes or other carriers) encoding one or more biomolecules of interest.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: January 3, 2023
    Inventors: Robert James Debs, Timothy D. Heath, Chakkrapong Handumrongkul
  • Patent number: 11535824
    Abstract: The present invention provides methods and compostions to improve the efficiency of somatic cell nuclear transfer (SCNT). There is increasing evidence that the epigenetic state of donor nuclei has a significant impact on potential of nuclear transfer embryos to develop into blastocysts, from which pluripotent stem cells are derived. Strategic application of histone agents, capable of altering epigenetic state such as methylation, allows zygotic activation and robust blastocyst generation.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: December 27, 2022
    Assignee: Sung Kwang Medical Foundation
    Inventors: Young Gie Chung, Dong Ryul Lee, Jin Hee Eum
  • Patent number: 11499165
    Abstract: Disclosed herein are peptide sequences capable of directing adeno-associated viruses (AAV) to target specific environments, for example the nervous system and the heart, in a subject. Also disclosed are AAVs having non-naturally occurring capsid proteins comprising the disclosed peptide sequences, and methods of using the AAVs to treat diseases.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: November 15, 2022
    Assignee: California Institute of Technology
    Inventors: Benjamin E. Deverman, Viviana Gradinaru, Ken Y. Chan
  • Patent number: 11473082
    Abstract: Disclosed are compositions and methods for directing proteins to specific loci in the genome and uses thereof. In one aspect, the disclosed methods allow for directing proteins to specific loci in the genome of an organism, including the steps of providing a fusion protein comprising a DNA localization component and an effector molecule. Preferred embodiments of the disclosure include, but are not limited to, the following fusion proteins: dSaCas9-Clo051, dCas9-Clo051, Xanthomonas-TALE-Clo051, and Ralstonia-TALE-Clo051.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: October 18, 2022
    Assignee: Poseida Therapeutics, Inc.
    Inventors: Eric Ostertag, Tseten Yeshi, Xianghong Li
  • Patent number: 11470826
    Abstract: An object of the present invention is to provide a method of conveniently producing a genetically modified non-human mammal with high efficiency using a CRISPR-Cas9 system and particularly a production method whereby gene knock-in can be achieved with high efficiency regardless of the gene size. The method of producing a genetically modified non-human mammal comprises introducing a Cas9 protein, a crRNA fragment comprising a nucleotide sequence complementary to a target DNA region, and a tracrRNA fragment into a non-human mammalian oocyte to genetically modify the target DNA.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: October 18, 2022
    Assignee: NATIONAL UNIVERSITY CORPORATION TOKYO MEDICAL AND DENTAL UNIVERSITY
    Inventors: Kohichi Tanaka, Tomomi Aida, Yusaku Wada
  • Patent number: 11470828
    Abstract: This disclosure relates to an animal model of human disease. More specifically, this disclosure relates to a rodent model of mood disorders such as unipolar depression and an anxiety disorder. Disclosed herein are genetically modified rodent animals that carry a humanized G protein-coupled receptor 156 (GPR156) gene that encodes a mutant human GPR156 protein comprising Asp at an amino acid position corresponding to position 533 in a full length wild type human GPR156 protein.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: October 18, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Meghan Drummond Samuelson, Brian Zambrowicz, Ka-Man Venus Lai, Charleen Hunt, Susannah Brydges, Andrew J. Murphy, Claudia Gonzaga-Jauregui, Jose Rojas, Nicole Alessandri-Haber, Robert Breese, Susan D. Croll
  • Patent number: 11471499
    Abstract: The present invention provides methods for inducing regression of tumors in human subjects, the methods utilize a modified mesogenic strain of Newcastle disease virus (NDV) with modified F protein cleavage site, which is non-pathogenic to poultry (lentogenic), but exhibits oncolytic properties. The disclosed methods provide safe, effective and reliable means to induce regression of a tumor in an individual in need thereof. These methods overcome the drawbacks of using pathogenic strains of viruses for human therapy.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: October 18, 2022
    Assignee: MEDIMMUNE LIMITED
    Inventors: Xing Cheng, Danielle Carroll, Matthew McCourt, Mark Galinski, Hong Jin
  • Patent number: 11464217
    Abstract: Disclosed herein are rodents (such as mice and rats) genetically modified at an endogenous Scn9a locus to comprise an exogenous Scn nucleotide sequence such as the coding sequence of a human SCN2A gene. Also disclosed are methods and compositions useful for making such rodents, and methods of using such rodents for generating anti-NaV1.7 antibodies.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: October 11, 2022
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Nicole Alessandri-Haber, Andrew J. Murphy, Lynn Macdonald
  • Patent number: 11458168
    Abstract: Embodiments of the disclosure include methods and compositions for producing NKT cells effective for immunotherapy and also methods and compositions for providing an effective amount of NKT cells to an individual in need of immunotherapy. In specific embodiments, the NKT cells are CD62L+ and have been exposed to one or more costimulatory agents to maintain CD62L expression. The NKT cells may be modified to incorporate a chimeric antigen receptor, in some cases.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: October 4, 2022
    Assignee: Baylor College of Medicine
    Inventors: Leonid S. Metelitsa, Amy N. Courtney, Gengwen Tian
  • Patent number: 11445710
    Abstract: Described are transgenic, non-human animals comprising a nucleic acid encoding an immunoglobulin light chain, whereby the immunoglobulin light chain is human, human-like, or humanized. The nucleic acid is provided with a means that renders it resistant to DNA rearrangements and/or somatic hypermutations. In one embodiment, the nucleic acid comprises an expression cassette for the expression of a desired molecule in cells during a certain stage of development in cells developing into mature B cells. Further provided is methods for producing an immunoglobulin from the transgenic, non-human animal.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 20, 2022
    Assignee: Merus N.V.
    Inventors: Ton Logtenberg, Mark Throsby, Robert A. Kramer, Rui D. Pinto, Cornelis A. De Kruif, Erwin Houtzager
  • Patent number: 11439132
    Abstract: Provided are a humanized transgenic non-human animal, especially a rodent, in particular a transgenic mouse containing a human interleukin 17A (IL-17A) gene, a human gene 17RA (IL-17RA) and/or a human TNF-alpha gene, and a preparation method therefor and the use thereof.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: September 13, 2022
    Assignee: Biocytogen Pharmaceuticals (Beijing) Co., Ltd.
    Inventors: Yuelei Shen, Chaoshe Guo, Yanan Guo, Yang Bai, Rui Huang, Lei Zhao, Xiaofei Zhou, Meiling Zhang, Jiawei Yao
  • Patent number: 11400115
    Abstract: The present disclosure relates in some aspects to methods, cells, and compositions for preparing cells and compositions for genetic engineering and cell therapy. Provided in some embodiments are streamlined cell preparation methods, e.g., for isolation, processing, incubation, and genetic engineering of cells and populations of cells. Also provided are cells and compositions produced by the methods and methods of their use. The cells can include immune cells, such as T cells, and generally include a plurality of isolated T cell populations or types. In some aspects, the methods are capable of preparing of a plurality of different cell populations for adoptive therapy using fewer steps and/or resources and/or reduced handling compared with other methods.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: August 2, 2022
    Assignee: Juno Therapeutics, Inc.
    Inventors: Chris Ramsborg, Mark L. Bonyhadi, Calvin Chan, Pascal Beauchesne