Patents Examined by Anuradha Ahuja
  • Patent number: 11255176
    Abstract: A method of propping created fractures and microfractures in tight formation. The method includes injecting into a wellbore a first pad fluid stage; injecting into the wellbore a second pad fluid stage; injecting into the wellbore a diverting agent; and injecting into the wellbore a main proppant slurry stage; wherein the first pad fluid stage includes an aqueous-based fluid at a rate above the fracturing gradient to create a fracture, wherein the second pad fluid stage includes an aqueous-based fluid and a low concentration of a proppant mixture including a slurry of small proppant materials and/or a slurry of conventional proppant materials to extend the fracture and open up secondary induced fractures, and wherein the main proppant slurry stage includes an aqueous-based fluid and a proppant with a larger size than the small proppant particles in the second pad fluid stage.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 22, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Philip D. Nguyen, Ronald Glen Dusterhoft, Dipti Singh
  • Patent number: 11248446
    Abstract: One method includes position an antenna inside a wellbore in a location corresponding to a formation where near wellbore damage occurs; wherein the wellbore extends from a surface of a hydrocarbon reservoir downward into the subterranean structure of the hydrocarbon reservoir; transmitting an electromagnetic (EM) wave to the antenna; and irradiating, from the antenna, at least a portion of the EM wave at the formation, wherein the portion of the EM wave removes the near wellbore damage at the formation.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: February 15, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Feng Liang, Jinhong Chen, Rajesh Kumar Saini, Hui Hai Liu
  • Patent number: 11236582
    Abstract: Capsules with a cement additive covered by a polymeric outer shell are added to wellbore cement. The additive is released from the shells by osmosis or shell ruptures. Capillary forces draw the additive into micro-annuli or cracks present in the cement, where the additive seals the micro-annuli and cracks to define a self-sealing material. The empty shells remain in the cement and act as an additive that modifies cement elasticity. The capsules are formed by combining immiscible liquids, where one of the liquids contains a signaling substance, and each of the liquids contains a reagent. When combined, the liquids segregate into a dispersed phase and a continuous phase, with the dispersed phase having the signaling agent. The reagents react at interfaces between dispersed and continuous phases and form polymer layers encapsulating the signaling agent to form the capsules. Adjusting relative concentrations of the reagents varies membrane strength and permeability.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: February 1, 2022
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventor: Elizabeth Q. Contreras
  • Patent number: 11187057
    Abstract: Expansive cements for use in cementing subterranean wells comprise water, an inorganic cement and one or more particulate materials that swell upon contact with a water immiscible fluid. The cements may further comprise a water immiscible fluid. Such cements are designed to seal microannuli arising from the presence of water immiscible fluids on casing surfaces, borehole wall surfaces or both.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: November 30, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Bipin Jain
  • Patent number: 11162341
    Abstract: A method of fracturing multiple productive zones of a subterranean formation penetrated by a wellbore is disclosed. The method comprises injecting a fracturing fluid into each of the multiple production zones at a pressure sufficient to enlarge or create fractures in the multiple productive zones, wherein the fracturing fluid comprises an upconverting nanoparticle that has a host material, a dopant, and a surface modification such that the upconverting nanoparticle is soluble or dispersible in water, a hydrocarbon oil, or a combination thereof; recovering a fluid from one or more of the multiple production zones; detecting the upconverting nanoparticle in the recovered fluid by exposing the recovered fluid to an excitation radiation having a monochromatic wavelength; and identifying the zone that produces the recovered fluid or monitoring an amount of water or oil in the produced fluid by measuring an optical property of the upconverting nanoparticle in the recovered fluid.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: November 2, 2021
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sankaran Murugesan, Valery Khabashesku, Qusai Darugar
  • Patent number: 11162008
    Abstract: A method includes placing a weighted fluid in the subterranean formation. The weighted fluid includes calcium bromide. The weighted fluid includes one or more secondary salts that are each independently an inorganic bromide salt other than calcium bromide. The weighted fluid also includes water. The weighted fluid has a density at standard temperature and pressure of at least about 1.7 g/cm3.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: November 2, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Alan William Marr
  • Patent number: 11156072
    Abstract: A well configuration for co-injection processes, wherein a horizontal producer well at the bottom of the pay is combined with injection or injection and producer wells that are vertical and above the lower horizontal production well. This well arrangement minimizes “blanket” effects by non-condensable gases.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 26, 2021
    Assignee: CONOCOPHILLIPS COMPANY
    Inventors: Bo Chen, Qing Chen
  • Patent number: 11149183
    Abstract: Y-grade NGL or L-grade is used as a carrier fluid to transport one or more chemical additives into a hydrocarbon bearing reservoir to treat the hydrocarbon bearing reservoir. The Y-grade NGL or L-grade and the chemical additives may be chilled and/or foamed.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: October 19, 2021
    Assignee: Linde Aktiengesellschaft
    Inventors: John A. Babcock, Charles P. Siess, III, Kevin G. Watts
  • Patent number: 11130907
    Abstract: Methods of treating a subterranean formation include obtaining or providing compositions that include an alkenoate ester. The compositions also includes at least one of a dialkenyldihydrocarbylammonium halide and an N,N-dihydrocarbyl-substituted alkenamide. The methods also include placing the composition in a subterranean formation downhole. Methods of treating a subterranean formation include using a composition including a polymer that is a reaction product of a mixture including an alkenoate ester and at least one of a dialkenyldihydrocarbylammonium halide and an N,N-dihydrocarbyl-substituted alkenamide.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: September 28, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Philip D. Nguyen, Loan K. Vo
  • Patent number: 11125067
    Abstract: Methods of hydraulically fracturing a subterranean formation to improve the production rates and ultimate recovery by contacting unconsolidated resin-coated proppant particulates residing in a propped fracture with a reactive crosslinker in order to form a consolidated proppant pack. Methods for using proppant surface chemistry in water injection wells to consolidate the resin-coated proppant particulates in a gravel packed or frac packed region of a wellbore.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: September 21, 2021
    Assignee: CARBO CERAMICS, INC.
    Inventors: Chad Cannan, Thu Lieng, Daryl Johnson, Mark Conner
  • Patent number: 11118093
    Abstract: A micronized date tree particle mix loss prevention material (LPM) is provided. The micronized date tree particle mix LPM includes date palm seed particles produced from date palm seeds and date tree fiber particles produced from date tree waste such as date tree trunks. The date palm seed particles may have a size in the range of 1 micron to less than 150 microns. The date tree waste fiber particles may have a size in the range of 1 micron to less than 250 microns. Methods of loss prevention and manufacture of a micronized date tree particle mix LPM are also provided.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: September 14, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Md Amanullah, Turki Al-Subaie
  • Patent number: 11111769
    Abstract: A method for enhanced depth penetration of energy into a formation may include mechanically stimulating proppant in proppant-containing fractures in the formation at a first frequency to induce mechanical stress in the proppant and directing electromagnetic radiation at a second frequency into the proppant-containing fractures of the formation while mechanically stimulating the proppant, wherein the first frequency and the second frequency are the same or different and wherein the proppant includes silica.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: September 7, 2021
    Inventor: John Dean
  • Patent number: 11092003
    Abstract: Tracing subterranean fluid flow includes providing a first polymeric tracer to a first injector, collecting a first aqueous sample from a first producer, and assessing the presence of the first polymeric tracer in the first aqueous sample. The first polymeric tracer includes a first polymer formed from at least a first monomer. The presence of the first polymeric tracer in the first aqueous sample is assessed by removing water from the first aqueous sample to yield a first dehydrated sample. pyrolyzing the first dehydrated sample to yield a first gaseous sample, and assessing the presence of a pyrolization product of the first polymer in the first gaseous sample. The presence of the pyrolization product of the first polymer in the first gaseous sample is indicative of the presence of a first subterranean flow pathway between the first injector location and the first producer location.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: August 17, 2021
    Assignee: Saudi Arabian Oil Company
    Inventor: Jason R. Cox
  • Patent number: 11091984
    Abstract: A method may include: introducing a treatment fluid comprising a descaling agent and a carrier fluid into a wellbore, the descaling agent comprising an N-(phosphonoalkyl)iminodiacetic acid wherein the treatment fluid has a pH less than 13.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: August 17, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Aaron Michael Beuterbaugh, Enrique Antonio Reyes, Alyssa Lynn Lablanc
  • Patent number: 11041348
    Abstract: A method of servicing a wellbore extending from a surface of the earth and penetrating a subterranean formation, including: removing water from an aqueous based wellbore servicing fluid by contacting the aqueous based wellbore servicing fluid with a porous substrate coated with a hydrophilic and oleophobic coating, whereby water is removed from the aqueous based wellbore servicing fluid via passage through the porous substrate, and whereby a water concentration and a volume of the aqueous based wellbore servicing fluid are reduced and a density of the aqueous based wellbore servicing fluid is increased to provide a modified aqueous based wellbore servicing fluid.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: June 22, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, William Walter Shumway
  • Patent number: 11021640
    Abstract: Systems and methods for treating subterranean formations using particulates treated with hydrophobizing agents in aqueous base fluid are provided. In one embodiment, the methods comprise: providing a treatment fluid comprising an aqueous base fluid and at least one particulate treated with one or more hydrophobizing agents; introducing the into a wellbore penetrating at least a portion of a subterranean formation; and using the treatment fluid to drill a portion of the wellbore.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: June 1, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: William Walter Shumway, Jessica Paola Ramirez Angulo, Kay Ann Galindo
  • Patent number: 11015422
    Abstract: A non-aqueous slurry contains a non-aqueous liquid immiscible in water (such as a hydrocarbon based oil) having dispersed therein a crosslinking agent (such as a borate crosslinking agent) and an oil-wetting surface active material. The non-aqueous slurry further contains an organophilic clay. The non-aqueous slurry, when used in an aqueous fracturing fluid, provides crosslinking delay between the crosslinking agent and a hydratable polymer, such as guar or guar derivatives. The aqueous fracturing fluid provides an enhanced fracture network after being pumped into a well.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 25, 2021
    Assignee: Independence Oilfield Chemicals, LLC
    Inventors: Jeffrey C. Dawson, Xiyuan Chen
  • Patent number: 11008844
    Abstract: A method of stimulating the inflow of oil and/or gas from the wellbore, in particular, a hydraulic fracturing method, is disclosed. The method of hydraulic fracturing comprises the stages: injecting a slug of a proppant-free fluid through the well into a formation for hydraulic fracture creation and propagation; injecting a slug of proppant-laden slurry into the formation to create a proppant pack in the hydraulic fracture; injecting a slug of slurry that contains a fluid and the polyelectrolyte complex-based proppant aggregates to create permeable channels in the near-wellbore area of the hydraulic fracture; injecting a slug of a displacement fluid into the well. This sequence of operations allows avoiding the proppant slurry overdisplacement deep into the hydraulic fracture, maintaining high fracture conductivity, and increasing the well productivity.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: May 18, 2021
    Assignee: Schlumberger Technology Corporation
    Inventors: Chad Kraemer, Fedor Nikolaevich Litvinets, Sergey Vladimirovich Semenov, Mohan Kanaka Raju Panga, Maxim Pavlovich Yutkin, Ksenia Mikhailovna Kaprielova, Sergey Sergeevich Skiba, Bernhard Rudolf Lungwitz, Denis Viktorovich Bannikov
  • Patent number: 11008832
    Abstract: Disclosed herein are compositions and methods for reducing fluid loss in a well bore. Also disclosed herein are methods for wellbore strengthening and increasing the integrity of the borehole of an oil or gas well. In particular, disclosed are methods for artificially increasing the temperature of a subsurface formation in the wellbore to increase the apparent wellbore strength.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: May 18, 2021
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Eric Van Oort, Besmir B. Hoxha, Ali Karimi Vajargah, Robert O. Williams, III, Hugh Smyth, Silvia Ferrati
  • Patent number: 10995251
    Abstract: A method and drilling fluid additive for reducing severe fluid losses in a well, comprising a combination of granular scrap tire particles and polymer adhesive molded into a capsule shape. Once in the severe loss zone, a plurality of LCMs wedge into the formation fractures and seal off the severe loss zone.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: May 4, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Md Amanullah, Raed A. Alouhali, Mohammed K. Arfaj