Patents Examined by Ari M. Diacou
  • Patent number: 9239374
    Abstract: A beamforming method according to the present invention is a method of processing echo signals of a target region which are obtained from a probe including a plurality of receiving elements arrayed on a predetermined line. The beamforming method includes the following steps (S1 to S3). At S1, seed beams are formed from echo signals received by at least two receiving elements from among the plurality of receiving elements. At S2, a main beam and sub beams are formed by synthesizing at least one of the seed beams. At S3, a narrow beam for the target region is formed by multiplying the sub beams by respective predetermined coefficients and subtracting the multiplied sub beams from the main beam. Here, an signal intensity for the target region regarding the main beam is higher than a signal intensity for the target region regarding each of the sub beams.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: January 19, 2016
    Assignee: KONICA MINOLTA, INC.
    Inventors: Mineo Tsushima, Yasuhito Watanabe, Takeo Kanamori
  • Patent number: 9238563
    Abstract: Some aspects relate to an apparatus for detecting an edge of a material web. In some examples, the apparatus comprises an ultrasound sensor which comprises two or more separately readable ultrasound receiver elements and an ultrasound transmitter element, wherein the ultrasound transmitter element is designed and arranged such that it applies an ultrasound measurement signal to two or more of the ultrasound receiver elements.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: January 19, 2016
    Assignee: TEXMAG GMBH VERTRIEBSGESELLSCHAFT
    Inventors: Lars Zwerger, Wolfgang Krauth, Günter Franz
  • Patent number: 9234973
    Abstract: A method includes enabling a power supply of a ground sensor device to provide power to one or more components of the ground sensor device based on one or more rotations of a rotor of the ground sensor device.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 12, 2016
    Assignee: The Boeing Company
    Inventors: David Scarlatti, David Esteban-Campillo, Javier Garcia
  • Patent number: 9231367
    Abstract: In an embodiment, a laser chip includes a laser, an optical amplifier, a first electrode, and a second electrode. The laser includes an active region. The optical amplifier is integrated in the laser chip in front of and in optical communication with the laser. The first electrode is electrically coupled to the active region. The second electrode is electrically coupled to the optical amplifier. The first electrode and the second electrode are configured to be electrically coupled to a common direct modulation source.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: January 5, 2016
    Assignee: FINISAR CORPORATION
    Inventor: Yasuhiro Matsui
  • Patent number: 9229120
    Abstract: The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. The seismic source includes systems for driving the acoustic energy systems using electric energy concurrently from both the generator and an electric energy accumulator such as a capacitor or battery, systems for adjusting the weight on the acoustic energy delivery system by raising and lowering wheels individually and an active energy isolation to isolate the chocks and impulses of the acoustic energy delivery system from the remainder of the seismic source.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: January 5, 2016
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer, Shan Shan
  • Patent number: 9217798
    Abstract: An electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons is provided. In one example, the source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. A foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: December 22, 2015
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer, Shan Shan
  • Patent number: 9217796
    Abstract: The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground to create impulses that deliver acoustic seismic energy into the earth for geophones to sense and record. However, the pulses of seismic energy are delivered in a distinctive fashion where different linear motors are deliberately and concurrently providing different signals that create a distinctive composite signature or signal that can be identified in the data record for source separation purpose.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: December 22, 2015
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer, Shan Shan
  • Patent number: 9217799
    Abstract: The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: December 22, 2015
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer, Shan Shan
  • Patent number: 9207342
    Abstract: A method is described for determining a shear wave velocity of a transversely isotropic region of an earth formation traversed by a wellbore with a non-zero relative dip angle between a longitudinal axis of the wellbore and an axis of symmetry of the TI region. A sonic tool is used to measure shear velocities in the TI region with polarizations orthogonal to the longitudinal axis of the wellbore. One of the shear velocities is identified as a quasi-shear velocity. A shear wave velocity is calculated, as a function of the quasi-shear velocity, for propagation in a direction along the axis of symmetry of the TI region. Where the orientation of the sonic tool is not known and the measured shear velocities comprises a fast shear velocity and a slow shear velocity, the method comprises identifying either the fast or the slow shear velocity as a quasi-shear mode.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: December 8, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventor: Gregory John Ball
  • Patent number: 9188693
    Abstract: A method for acquiring marine seismic data includes towing a seismic energy source in a body of water and towing a seismic sensor at a selected distance from the seismic energy source. The seismic energy source is actuated a plurality of positions, a distance between each of the plurality of actuations being randomly different than any other such distance. Seismic energy detected by the seismic sensor is substantially continuously recorded through a plurality of actuations of the at least one seismic energy source. The recording includes recording a geodetic position of the at least one seismic energy source and the at least one seismic sensor at each actuation.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 17, 2015
    Assignee: Apache Corporation
    Inventors: David J. Monk, Michael S. Bahorich
  • Patent number: 9188692
    Abstract: A method is proposed for acquiring seismic data relative to an area of the subsoil, wherein at least one seismic source is moved and seismic waves are emitted in successive shooting positions of the source so as to illuminate said area of the subsoil, and the signals resulting from this emissions are picked up using a set of cables having a substantially zero buoyancy and provided with receivers. The cables have a substantially zero speed or a speed substantially slower than the source in the terrestrial reference frame. And said successive shot positions are determined as a function of the position of the receivers relative to the terrestrial reference frame to optimize at least one quality criterion relating to the set of seismic signals acquired by the receivers in respect of said area. Such a method enables improved seismic data acquisition.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: November 17, 2015
    Assignee: KIETTA
    Inventor: Luc Haumonte
  • Patent number: 9176248
    Abstract: A method for estimating an underwater acoustic sound velocity in a network of acoustic nodes arranged along towed acoustic linear antennas and in which a plurality of acoustic signals are transmitted between the nodes. The method includes: obtaining two predetermined distances each separating a couple of nodes placed along a same first acoustic linear antenna (31); for each couple of first and second nodes, obtaining a first propagation duration of an acoustic signal transmitted between said first node and a third node placed along a second acoustic linear antenna and a second propagation duration of an acoustic signal transmitted between said second node and said third node; and estimating said underwater acoustic sound velocity, as a function of said two predetermined distances and said first and second propagation durations obtained for each couple of nodes.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: November 3, 2015
    Assignee: SERCEL
    Inventors: Christophe L'Her, Dominique Barbot
  • Patent number: 9170343
    Abstract: The invention is an electric seismic vibrator source of the type used in seismic prospecting for hydrocarbons that creates a quasi-impulsive burst of seismic energy onto the ground and into the earth. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground. All of the linear electric motors are driven against the ground in a high power pulse that delivers a band-limited spectrum of seismic energy over a very brief period of time that would like a “pop” and be measured in milliseconds. A quasi-impulsive seismic pulse would create a wave field that resembles the seismic data acquired using dynamite or other explosive seismic systems without the ultrahigh frequencies of a true explosive pulse. The quick burst or several quick bursts may further speed up the survey by minimizing the time that a vibe spends on a source point.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 27, 2015
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer, Shan Shan
  • Patent number: 9170345
    Abstract: The invention is a method for extrapolating missing near-offset seismic data (101) so that the data may be used, for example, in SRME or another multiple-reflection elimination method. The invention uses the reciprocity principle (102) to relate two seismic states (acoustic or elastic) that can occur in a time-invariant, bounded domain in space. One of these states represents the physical experiment for the acquisition of the actual seismic data where near-offset traces are missing, and the other state represents a synthetic experiment with no missing near offset traces, computer-generated on a much simpler earth model. The reciprocity relationship used to relate these two states is iteratively inverted for the missing near-offset traces (103), preferably using only part of the synthetic data (102) so as to reduce inversion artifacts. The reference model acts as a constraint on the near-offset extrapolation.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: October 27, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Mamadou S. Diallo, Warren S. Ross
  • Patent number: 9170368
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 27, 2015
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Jens Limpert, Fabian Roeser, Tino Eidam, César Jáuregui Misas, Andreas Tuennermann
  • Patent number: 9170342
    Abstract: The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. The seismic source further includes an active isolation system that provides for significant weight on the ground through the rods of the linear electric motors, but protects the vehicle body and the remainder of the systems on the seismic source to be insulated from the harshest vibration related to the acoustic energy being applied to the ground.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 27, 2015
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer, Shan Shan
  • Patent number: 9164189
    Abstract: A method for managing a multi-vessel seismic system including a first vessel, having a recording system and towing a streamer integrating seismic sensors, and a second vessel, including at least one seismic source performing shots. The second vessel sends to the first vessel a plurality of series of shot predictions. For each shot, the second vessels activates the seismic source according to the predictions and sends to the first vessel shot data relating to the shot. The first vessel activates the recording system. If the first vessel has not received the shot data relating to at least one performed shot, it sends a request to the second vessel and receives in response the missing shot data. For each performed shot and the related shot data, the system selects seismic data and combines the selected seismic data with the related shot data to obtain combined data allowing a seabed representation.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: October 20, 2015
    Assignee: SERCEL
    Inventor: Didier Renaud
  • Patent number: 9166359
    Abstract: Method and laser oscillator for the generation of a laser beam—According to the invention with a view to adjusting, inside said laser oscillator (1), the phase of each of the N elementary laser beams (FLE.1, FLE.2, FLE.N) generated on the basis of said laser oscillator (1) in such a way that said elementary laser beams are in phase, the deviation between the phase of an individual elementary laser beam (FLE.1) and the phases of the N?1 other elementary laser beams (FLE.2, FLE.N) is converted into a level of luminous intensity by means of at least one optical filtering element to which at least a part of each elementary laser beam is directed.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 20, 2015
    Assignee: COMPAGNIE INDUSTRIELLE DES LASERS CILAS
    Inventors: David Sabourdy, Jean-Eucher Montagne, Alain Barthelemy, Agnès Desfarges-Berthellemot, Vincent Kermene, Julien Guillot, Brigitte Serreault, Bruno Esmiller
  • Patent number: 9164186
    Abstract: The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power to drive a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion. Preferably, a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 20, 2015
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer
  • Patent number: 9164187
    Abstract: The invention is an electric power accumulator used with an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power to drive a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion. The source may also be designed to use electric power to drive the source from location to location through a survey area. A large electric power accumulator is provided to store electric power when the generator is able to produce excess power and the accumulator may deliver power along with the generator to drive the rods and deliver acoustic energy. With a large electric power accumulator, such as a battery or capacitor, the engine and generator combination may be engineered to be somewhat smaller, less costly and more efficient than a system where the engine and generator were sized to provide the electric power at times of maximum electric draw.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 20, 2015
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer, Shan Shan