Patents Examined by Ariella Machness
-
Patent number: 12115728Abstract: An object can be made one section at a time, that is layerwise, using an apparatus for making an object using a stereolithographic method. In a step of the stereolithographic method, a layer of a material used for making the object may be solidified in the shape of a section of the object. Disclosed herein is an apparatus (100) for making a stereolithographic object (122). Also disclosed herein is a method for making a stereolithographic object (122).Type: GrantFiled: March 10, 2022Date of Patent: October 15, 2024Inventor: Justin Elsey
-
Patent number: 12115557Abstract: A powder reclamation system is provided. The powder reclamation system includes a support structure; a filter housing movable relative to the support structure, the filter housing defining an inlet and an outlet; a raw reclaimed powder hopper in communication with the inlet of the filter housing; a first reclamation passageway in communication with the raw reclaimed powder hopper and configured to be in communication with a first metal powder processing device to recover a first unused portion of a first powder from the first metal powder processing device to the raw reclaimed powder hopper; and a second reclamation passageway in communication with the raw reclaimed powder hopper and configured to be in communication with a second metal powder processing device to recover a second unused portion of a second powder from the second metal powder processing device to the raw reclaimed powder hopper.Type: GrantFiled: October 29, 2019Date of Patent: October 15, 2024Assignee: General Electric CompanyInventors: Anthony Charlebois, Mathieu Roy, Patrick Gauthier
-
Patent number: 12110362Abstract: An example of a three-dimensional (3D) printing kit includes a build material composition and a fusing agent to be applied to at least a portion of the build material composition during 3D printing. The build material composition includes a semi-crystalline thermoplastic polymer having a surface energy density greater than 41 mN/m. The fusing agent includes an energy absorber to absorb electromagnetic radiation to coalesce the semi-crystalline thermoplastic polymer in the at least the portion.Type: GrantFiled: September 7, 2018Date of Patent: October 8, 2024Assignee: Hewlett-Packard Development Company, L.P.Inventors: Ali Emamjomeh, Shannon Reuben Woodruff, Kenneth Flack, Greg S Long, Katrina Donovan, Erica Fung, Jacob Tyler Wright, James W Stasiak
-
Patent number: 12103253Abstract: A 3D printing system can include an extruding system, curing system and feedback system. The extruding system can include a feed pipe coupled to a printing material source and a nozzle that extrudes a printed material. The feedback system can include a processor and sensors and can detect the temperature and location of the curing system during the printing process. The curing system cures the printed material after extrusion and includes curing sources coupled to a mounting arrangement, which can be a curved surface. The curing sources can each be directed toward a focal region located proximate the nozzle outlet and can combine to emit a combined curing energy to the focal region. The curing sources can be LEDs and the curing energy can be UV light. The curing system can rotate about an axis during printing and curing to facilitate rapid movement and printing of complex 3D objects.Type: GrantFiled: March 31, 2021Date of Patent: October 1, 2024Assignee: Mighty Buildings, Inc.Inventors: Sergey Khripunov, Evgeniy Kuznetsov, Igor Obach, Aleksei Dubov, Anna Ivanova
-
Patent number: 12005632Abstract: Systems and methods for lens creations are disclosed. The method includes initiating light transmission from a light source through a diffuser into a container holding resin and a substrate. The light transmission is performed according to an irradiation pattern wherein each point in the resin is illuminated by at least 10% of the diffuser. This causes a lens to be formed. To achieve this illumination, at least 15% of the diffuser receives light from the light source. Further, a diameter of the diffuser is greater than or equal to a diameter of the substrate. The system performing the methods includes a polymerization apparatus and may include a resin conditioning and reservoir apparatus, a metrology unit, a resin drainage apparatus and an optional postcuring apparatus.Type: GrantFiled: March 13, 2023Date of Patent: June 11, 2024Assignee: Indizen Optical Technologies S.L.Inventors: Eduardo Pascual, José Alonso Fernández, Ignacio Canga, Juan Antonio Quiroga Mellado, Daniel Crespo Vázquez
-
Patent number: 11969941Abstract: Provided is a binder jetting 3D printer capable of continuous printing, wherein a box assembly is supplied by a horizontal movement guide means, a 3D object is built with binder jetting within a build box, and the box assembly in which the 3D object is built is withdrawn, thereby printing 3D objects continuously. In particular, provided is a binder jetting 3D printer capable of continuous printing, wherein a box assembly including a powder supply box and a build box is simplified by integrating the boxes and a lifting and lowering process of a supply plate and of a build plate is facilitated, thereby reducing the time taken for a 3D printing process and thus improving productivity.Type: GrantFiled: June 22, 2021Date of Patent: April 30, 2024Assignee: KLABS.INCInventors: Won Hyo Kim, Do Young Kim
-
Patent number: 11969935Abstract: In one aspect, the present disclosure provides a nozzle for a 3D printing system. The nozzle may include a flowpath with a material inlet and a material outlet. The nozzle may further include a valve in fluid communication with the flowpath between the material inlet and the material outlet, where the valve includes a closed state and an open state, where in the closed state the valve obstructs the flowpath between the material inlet and the material outlet, and where in the open state the material inlet is in fluid communication with the material outlet. The nozzle may further include a compensator in fluid communication with the flowpath, where the compensator includes a contracted state associated with the open state of the valve and an expanded state associated with the closed state of the valve.Type: GrantFiled: December 5, 2017Date of Patent: April 30, 2024Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGEInventors: Jennifer A. Lewis, Mark A. Skylar-Scott, Jochen Mueller
-
Patent number: 11964424Abstract: Disclosed herein is an apparatus (100) for making a stereolithographic object (122). Also disclosed herein are methods for making a stereolithographic object (122), a method for locating the position of debris, a method for characterising the viscosity of the material (104), and a method for monitoring consumption of a material (104) for making a stereolithographic object (122).Type: GrantFiled: September 16, 2022Date of Patent: April 23, 2024Inventor: Justin Elsey
-
Patent number: 11958237Abstract: A three-dimensional (3D) printing system for preparing an object made at least partially of an expanded polymer including: a printing device for transporting and depositing a strand of expanded polymer including a blowing agent onto a surface and a 3D movement device for adjusting the position of the printing device in a predefined matrix allowing deposit of the strand of expanded polymer at a predetermined time and precise position within the matrix, the printing device includes: a feed section, a transporting section, a surface melting section, and a terminal printing head section for depositing the expanded polymer strand onto the surface, and all of sections have the same inner diameter, and the surface melting section including a solid-state welding element, a laser beam, a generator of hot gas or liquid and/or a generator of heat.Type: GrantFiled: August 21, 2019Date of Patent: April 16, 2024Assignee: SULZER MANAGEMENT AGInventors: Stephen Shields, Daniele Tammaro, Ulla Trommsdorff, Claudio Walker
-
Patent number: 11951191Abstract: A filled self-cured dental material is described comprising inorganic boron nitride and/or zirconia particles in a solvent dispersion agent, the nanoparticles being entrained by an ultrasonic homogenizer technique to enhance both strength and stiffness of the dental material.Type: GrantFiled: December 15, 2020Date of Patent: April 9, 2024Assignee: University of TabukInventors: Mana Alqahtani, Nacer Badi
-
Patent number: 11951686Abstract: A method for manufacturing a three-dimensional shaped object includes: a plasticizing step of plasticizing at least a part of a shaping material containing a thermoplastic resin to generate a plasticized material; a fiber introducing step including at least one of a step of introducing a covered fiber material, which is a fiber material covered with a covering material, into the plasticized material after being discharged from the nozzle opening, and a step of introducing the covered fiber material into the shaping material or the plasticized material before being discharged from the nozzle opening; and a shaping step of shaping a three-dimensional shaped object including the covered fiber material.Type: GrantFiled: February 23, 2022Date of Patent: April 9, 2024Assignee: Seiko Epson CorporationInventors: Eiji Okamoto, Akihiko Tsunoya
-
Patent number: 11938679Abstract: A three-dimensional (3D) printing system includes a resin vessel, a fabrication subsystem, a waste collection subsystem, and a controller. The resin vessel is configured to contain photocurable resin. The fabrication subsystem is configured to form the 3D article with layer-by-layer selective curing of the photocurable resin. The fabrication subsystem includes a build plate, a build plate support structure, and a vertical movement mechanism. The waste collection subsystem is attached to the build plate support structure and configured to capture partially polymerized resin as the build plate support structure moves in an upward direction. The controller is configured to (a) operate the vertical movement mechanism to translate the build plate support structure to a lower position and (b) operate the vertical movement mechanism to raise the waste collection subsystem up through the resin and to a position at which partially polymerized resin can be unloaded from the waste collection subsystem.Type: GrantFiled: June 24, 2022Date of Patent: March 26, 2024Assignee: 3D SYSTEMS, INC.Inventors: Andrew Enslow, Darold Tejero Lazatin
-
Patent number: 11919228Abstract: According to some aspects, techniques are provided to mitigate challenges with additive fabrication devices that utilize a film. These techniques include: improvements to an additive fabrication device build platform to more evenly apply forces onto the film; techniques for inhibiting adhesion between a pair of films and for removing dirt or dust therein; techniques for detecting and/or mitigating the effects of scratches or dust on films; and techniques for detecting film punctures, detecting an imminent film puncture, and/or reducing the impact on the device when punctures occur.Type: GrantFiled: December 21, 2021Date of Patent: March 5, 2024Assignee: Formlabs, Inc.Inventors: Benjamin FrantzDale, Shane Wighton
-
Patent number: 11904541Abstract: A three-dimensional shaping device comprises: a shaping vessel that has an outer peripheral wall and a shaping stand, the shaping stand configuring a bottom portion of the shaping vessel; a rotation mechanism that rotates the shaping stand; and a raising/lowering device that raises/lowers the shaping stand, wherein shaping is performed while the outer peripheral wall and the shaping stand are being rotated at the same angular speed by the rotation mechanism.Type: GrantFiled: March 26, 2021Date of Patent: February 20, 2024Assignee: HONDA MOTOR CO., LTD.Inventors: Kotaro Yoshida, Teruo Kamada
-
Patent number: 11896942Abstract: Various methods and systems are provided for mixing and dispensing viscous materials for the creation of additive structures. As one example, during a mixing and dispensing operation with a mixing and dispensing head of a multi-dimensional printing apparatus, linear movement of a mixing rod positioned within a mixing chamber of the mixing and dispensing head, at least along a central axis of the mixing chamber, is adjusted based on an operating condition of the printing apparatus and dispensing of mixed liquids from the mixing and dispensing head is stopped by stopping one or more pumps fluidly coupled to the mixing chamber and linearly moving the mixing rod upward and away from a dispensing nozzle of the mixing and dispensing head.Type: GrantFiled: October 5, 2020Date of Patent: February 13, 2024Assignee: NIKE, Inc.Inventors: Sami Fakhouri, Askim Senyurt
-
Patent number: 11884539Abstract: Methods and systems for high-speed production of nanoparticles with very high product yields are described. Systems utilize concentric micro-scale capillaries arranged to define nanoparticle formation regions that lie along predetermined length(s) of the capillaries. Flow through the formation regions can be laminar during a formation protocol. The system can include on-line analytical tools for real time characterization of products or intermediates. Systems include an additive manufacturing-type deposition at the terminus of the formation section. The deposition area includes a print head and a print bed and provides for random or patterned deposition of nanoparticles. The print head and/or the print bed can be capable of motion in one or more degrees of freedom relative to one another.Type: GrantFiled: June 4, 2020Date of Patent: January 30, 2024Assignee: Battelle Savannah River Alliance, LLCInventors: Simona E. Hunyadi Murph, Vahid Majidi
-
Techniques for producing a flat film surface in additive fabrication and related systems and methods
Patent number: 11878467Abstract: Techniques for producing a flat film surface in additive fabrication are provided. According to some aspects, a movable stage may be arranged beneath a container having a base that includes a flexible film. The movable stage may include a segmented member in which a number of segments are aligned along a common axis. The segmented member may maintain contact with the flexible film as the movable stage moves beneath the container, with the segmented member producing a flat surface of the flexible film, at least within a region above the movable stage. According to some embodiments, multiple segmented members may be provided within the movable stage, such as in parallel with one another.Type: GrantFiled: May 31, 2019Date of Patent: January 23, 2024Assignee: Formlabs, Inc.Inventors: Shane Wighton, Maxim Lobovsky, Robert Joachim, Jack Moldave, Adam Damiano, Christian Reed, Dmitri Megretski, Benjamin FrantzDale -
Patent number: 11865776Abstract: A 3D printer for printing consumable items, the 3D printer comprising: a print head arranged to position nozzles of a plurality of liquid dispensers to define a regular polygon around a first Z axis; an actuator device operable to dispense a portion of liquid from each liquid dispenser; a print bed comprising a print zone, the print zone comprising a plurality of print locations arranged to define a regular polygon around a second Z axis; a translation device operable to move the print bed relative to the print head along X and Y axes; and a rotation device operable to cause relative rotation between the print zone and the print head such that, with the first Z axis aligned with the second Z axis, the actuator is operable to dispense liquid from each liquid dispenser onto a respective print location and thereafter the rotation device is operable to cause relative rotation between the print zone and the print head to place each print location in registration with a different one of the nozzles.Type: GrantFiled: June 8, 2020Date of Patent: January 9, 2024Assignee: REM3DY HEALTH LIMITEDInventors: Melissa Snover Burton, Martyn Catchpole
-
Patent number: 11858852Abstract: Systems and methods for preparing a three-dimensional printing material derived from aluminosilicate material are provided. The method includes the steps of heating an amount of aluminosilicate powder to a temperature between approximately 1,100° C. and approximately 1,750° C. to form a molten aluminosilicate material; maintaining the molten aluminosilicate material at a temperature between approximately 1,100° C. and approximately 1,750° C. between about one minute and approximately 45 minutes; extruding molten aluminosilicate material through a nozzle to form an elongated bead of molten aluminosilicate material; and cooling the molten aluminosilicate material to form a hardened aluminosilicate material. Once hardened, the aluminosilicate material includes between about 50% and 90% feldspar and demonstrates a strength of between about 5,000 psi and 30,000 psi.Type: GrantFiled: December 20, 2021Date of Patent: January 2, 2024Assignee: ICON Technology, Inc.Inventors: Kunal Kupwade-Patil, Michael McDaniel, Thao Hien Nguyen, Theodore Cera, Alexander Le Roux, Jason Ballard
-
Patent number: 11820078Abstract: A 3D printing machine includes a first spinning part moving in directions of three axes, i.e., X-, Y-, and Z-axes, to melt and spin a base material; and a second spinning part moving along a moving direction of the first spinning part to spin reinforcing fiber onto an upper surface of the spun base material, and moving clockwise or counterclockwise so that the reinforcing fiber is spun onto the upper surface of the base material at a moment when the first spinning part changes a moving direction thereof to the X- or Y-axis direction.Type: GrantFiled: March 15, 2022Date of Patent: November 21, 2023Assignees: HYUNDAI MOTOR COMPANY, KIA CORPORATIONInventor: Gyung Bok Kim