Patents Examined by Atiba O Fitzpatrick
  • Patent number: 11869191
    Abstract: A system for determining the viability of an embryo comprises an imaging device, an excitation device configured to direct an excitation energy at an embryo, a controller communicatively connected to the imaging device and the excitation device, configured to drive the excitation device and collect images from the imaging device at an imaging frequency, a processor performing steps comprising acquiring a set of images from the imaging device, performing a Fourier Transformation to generate a set of phasor coordinates, computing a D-trajectory, computing a set of values of additional parameters, comparing the set of values to a set of stored values related to embryos of known viability, and calculating a viability index factor of the embryo from the set of values and the set of stored values. Methods of calculating embryo viability and determining one or more properties of a tissue are also described.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: January 9, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ning Ma, Michelle Digman, Hongtao Chen
  • Patent number: 11869233
    Abstract: There is provided an imaging system. The imaging system comprising a multispectral camera configured to capture a multispectral image of an object, an RGB camera configured to capture a color image of the object, at least one storage device configured to store spectrum information for each of a plurality of labeled objects, and processing circuitry. The processing circuitry is configured to determine, based on the captured multispectral image, spectrum information associated with the object, associate, based at least in part, on the spectrum information associated with the object and the stored spectrum information for each of the plurality of objects, a label with the color image of the object, and store, on the at least one storage device, the color image and the associated label as training data.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: January 9, 2024
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Seichi Otsuki
  • Patent number: 11866791
    Abstract: Techniques for identifying and enumerating candidate target cells within a biological fluid specimen are described. A digital image of the biological fluid specimen is received, and one or more candidate regions of pixels in the digital image are identified by identifying connected regions of pixels of a minimum intensity having a size between a minimum size and a maximum size and an aspect ratio that meets a threshold. For each candidate region of at least one of the one or more candidate region, whether the portion of the image corresponding to the candidate region includes more than a threshold number of intensity levels is determined. If the portion of the image corresponding to the candidate region includes more than the threshold number of intensity levels the portion of the image is continued to be treated as a candidate for classification.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: January 9, 2024
    Assignee: CellMax Ltd.
    Inventors: Huangpin B. Hsieh, XiaoMing Wang, Jr-Ming Lai, Rui Mei, Hung-Jen Shao, Jen-Chia Wu
  • Patent number: 11859253
    Abstract: A method for identifying and enumerating candidate target cells within a biological fluid specimen is described. The method includes obtaining a biological fluid specimen, preparing the biological fluid specimen by staining cell features in the biological fluid specimen, capturing a digital image having a plurality of color channels of the biological fluid specimen, and applying image analysis to the digital image. A computer program product for identifying candidate target cells within a biological fluid specimen is also described. The computer program comprises instructions to cause a processor to carry out the image analysis.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: January 2, 2024
    Assignee: CellMax Ltd.
    Inventors: Huangpin B. Hsieh, XiaoMing Wang, Jr-Ming Lai, Rui Mei, Hung-Jen Shao, Jen-Chia Wu
  • Patent number: 11861939
    Abstract: Face image data is acquired and a face image is captured, and a difference between a face image indicated by the face image data and the face image that is captured or a candidate of the difference is detected on the basis of at least one of the face image indicated by the face image data that is acquired, and the face image that is captured. Guidance is acquired on the basis of the difference or the candidate of the difference which is detected, and an output unit is controlled to output the guidance.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: January 2, 2024
    Assignee: NEC CORPORATION
    Inventor: Koui Norimatsu
  • Patent number: 11861851
    Abstract: Anatomical and functional assessment of coronary artery disease (CAD) using machine learning and computational modeling techniques deploying methodologies for non-invasive Fractional Flow Reserve (FFR) quantification based on angiographically derived anatomy and hemodynamics data, relying on machine learning algorithms for image segmentation and flow assessment, and relying on accurate physics-based computational fluid dynamics (CFD) simulation for computation of the FFR.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: January 2, 2024
    Assignees: REGENTS OF THE UNIVERSITY OF MICHIGAN, KING'S COLLEGE LONDON
    Inventors: Carlos Alberto Figueroa-Alvarez, Christopher John Arthurs, Brahmajee Kartik Nallamothu, Kritika Iyer, Raj Rao Nadakuditi, Krishnakumar Garikipati, Elizabeth Renee Livingston
  • Patent number: 11862327
    Abstract: A remaining time calculation unit calculates, based on a notification waiting time indicating a time from when a feature region is recognized to when a notification of a recognition result of the feature region is started and a count time counted by a time count unit, a remaining time until the notification of the recognition result of the feature region is provided. A display control unit displays on a monitor remaining time notification information obtained based on at least the remaining time.
    Type: Grant
    Filed: February 7, 2021
    Date of Patent: January 2, 2024
    Assignee: FUJIFILM Corporation
    Inventor: Maiko Endo
  • Patent number: 11861475
    Abstract: Described here are systems and methods for generating and implementing a hybrid machine learning and mechanistic model to produce biological feature maps, or other measurements of biological features, based on an input of multiparametric magnetic resonance or other images. The hybrid model can include a combination of a machine learning model and a mechanistic model that takes as an input multiparametric MRI, or other imaging, data to generate biological feature maps (e.g., tumor cell density maps), or other measures or predictions of biological features (e.g., tumor cell density). The hybrid models have capabilities of learning individual-specific relationships between imaging features and biological features.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: January 2, 2024
    Assignees: Mayo Foundation for Medical Education and Research, Arizona Board of Regents on behalf of Arizona State University
    Inventors: Leland S. Hu, Jing Li, Kristin R. Swanson, Teresa Wu, Nathan Gaw, Hyunsoo Yoon, Andrea Hawkins-Daarud
  • Patent number: 11854201
    Abstract: A current observation area is determined exploratorily from among a plurality of candidate areas, on the basis of a plurality of observed areas in a biological tissue. A plurality of reference images obtained by means of low-magnification observation of the biological tissue are utilized at this time. A learning image is acquired by means of high-magnification observation of the determined current observation area. A plurality of convolution filters included in an estimator can be utilized to evaluate the plurality of candidate areas.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: December 26, 2023
    Assignee: NIKON CORPORATION
    Inventors: Kohki Konishi, Mitsuo Suga, Hideo Nishioka
  • Patent number: 11854233
    Abstract: Described is a method for processing image data to determine if a portion of the image data is affected due to sunlight. In some implementations, image data is sent to an image data store and camera parameters are sent to a radiance detection service. The radiance detection service, upon receiving the camera parameters, retrieves the image data, converts the image data to gray-scale and processes the image data based on the camera parameters to determine a radiance value for the camera. The radiance value may be compared to a baseline radiance value to determine if sunlight is represented in the image data. In some implementations, a baseline model may be developed for the camera and used to cancel out any pixels of the image data that are overexposed under normal or baseline conditions. Likewise, a foreground model may be generated to detect any objects in the image data for which corresponding pixel values should not be considered for determining if sunlight is represented in the image data.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: December 26, 2023
    Assignee: Amazon Technologies, Inc.
    Inventors: Riccardo Gherardi, Saral Jain, Hasan Tuna Icingir, Griffin Alexander Jarmin, Bo Chen
  • Patent number: 11842491
    Abstract: A method of generating a quantitative characterization of injury presence and status of spinal cord tissue using an adaptive CNN system for use in diagnostic assessment, surgical planning, and therapeutic strategy comprises preprocessing for artifact correction of diffusion based, spinal cord MRI data, training an adaptive CNN system with healthy and abnormal (injured/pathologic) spinal cord images obtained by imaging a population of healthy, typically developed spinal cord subjects and subjects with spinal cord injury, evaluating a novel, diffusion-based MRI image for injury biomarkers using the adaptive CNN system, generating a three-dimensional predictive axonal damage map for quantitative characterization and visualization of the novel, diffusion-based MRI image, and transmitting the sets of healthy and injured spinal cord images back to a central database for continued improvement of the adaptive CNN system training. A system for defining a predictive spinal axonal damage map is also described.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: December 12, 2023
    Assignee: Thomas Jefferson University
    Inventors: Christopher J. Conklin, Feroze B. Mohamed, Devon M. Middleton, Mahdi Alizadeh
  • Patent number: 11842492
    Abstract: A system performs cerebral hematoma analysis. The system includes a computing device receiving computerized tomography (CT) images from CT imaging devices. The CT images are associated with patients exhibiting cerebral hematomas. CT images may be converted into feature vectors and passed as input to a convolution neural network model for identification and diagnosis of hematoma volume changes. Detected changes may be thresholded to determine if the change represents an increase or shrinkage in the volumetry of the hematoma.
    Type: Grant
    Filed: October 4, 2022
    Date of Patent: December 12, 2023
    Inventor: Natasha Ironside
  • Patent number: 11836950
    Abstract: The present disclosure is directed to a computer system designed to (i) receive a series of images as input; (ii) compute a number of metrics derived from focus features and color separation features within the images; and (iii) evaluate the metrics to return (a) an identification of the most suitable z-layer in a z-stack, given a series of z-layer images in a z-stack; and/or (b) an identification of those image tiles that are more suitable for cellular based scoring by a medical professional, given a series of image tiles from an area of interest of a whole slide scan.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: December 5, 2023
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Jeffrey Atchison, Jim Martin, Anindya Sarkar
  • Patent number: 11836920
    Abstract: An apparatus for classifying a brain tissue area as functional or non-functional by a stimulation of the brain includes a receiver unit for receiving information about a performed stimulation, a recording device for recording images that represent the brain tissue area, a detection unit for detecting a change in perfusion in the brain tissue area, and a classification unit configured to determine with the information whether there is a correlation between the performed stimulation and the detected change in perfusion, and to classify the brain tissue area as functional or as non-functional. The recording device is an endomicroscope for recording endomicroscopic images of the brain tissue area with a spatial resolution better than 20 ?m and a frame rate of at least 0.4 frames per second. The detection unit is configured to detect a change in perfusion based on the positions of certain tissue structures in the recorded images.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: December 5, 2023
    Assignee: Carl Zeiss Meditec AG
    Inventors: Christoph Hauger, Stefan Saur, Gerald Panitz
  • Patent number: 11836924
    Abstract: A method and a system automatically generate a digital representation of an annulus structure of a valve from a segmented digital representation of a human internal heart. The basis for the segmented digital representation is multi-slice computed tomography image data. The method includes automatically determining, for at least a first effective time point, based on a segmentation, i.e. labels, of a provided input segmented digital representation, a candidate plane, and/or a candidate orientation vector together with a candidate center point, arranged with respect to the input segmented digital representation for the first effective time point, and candidate points for the annulus structure are determined automatically. From the candidate points acting as support points, a candidate spline interpolation is generated which is then adapted based on the input segmented digital representation.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: December 5, 2023
    Assignee: LARALAB GmbH
    Inventors: Julian Praceus, Aleksei Vasilev
  • Patent number: 11837354
    Abstract: Described herein is medical imaging technology for concurrent and simultaneous synthesis of a medical CA-free-AI-enhanced image and medical diagnostic image analysis comprising: receiving a medical image acquired by a medical scanner in absence of contrast agent enhancement; providing the medical image to a computer-implemented machine learning model; concurrently performing a medical CA-free-AI-enhanced image synthesis task and a medical diagnostic image analysis task with the machine learning model; reciprocally communicating between the image synthesis task and the image analysis task for mutually dependent training of both tasks. Methods and systems and non-transitory computer readable media are described for execution of concurrent and simultaneous synthesis of a medical CA-free-AI-enhanced image and medical diagnostic image analysis.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: December 5, 2023
    Assignee: London Health Sciences Centre Research Inc.
    Inventor: Shuo Li
  • Patent number: 11825835
    Abstract: The present application relates to the cultivation of crop plants using plant protection agents. Certain embodiments relate to methods, a system, and a computer program product for determining partial-area-specific requirements of a crop plant for plant protection agents.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: November 28, 2023
    Assignee: BASF AGRO TRADEMARKS GMBH
    Inventors: Fabian Johannes Schäfer, Holger Hoffmann, Ole Peters, Gang Zhao
  • Patent number: 11830222
    Abstract: The present invention proposes a bi-level optimization-based infrared and visible light fusion method, adopts a pair of infrared camera and visible light camera to acquire images, and relates to the construction of a bi-level paradigm infrared and visible light image fusion algorithm, which is an infrared and visible light fusion algorithm using mathematical modeling. Binocular cameras and NVIDIA TX2 are used to construct a high-performance computing platform and to construct a high-performance solving algorithm to obtain a high-quality infrared and visible light fusion image. The system is easy to construct, and the input data can be acquired by using stereo binocular infrared and visible light cameras respectively; the program is simple and easy to implement; and the fusion image is divided into an image domain and a gradient domain for fusion by means of mathematical modeling according to different imaging principles of infrared and visible light cameras.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: November 28, 2023
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Risheng Liu, Xin Fan, Jinyuan Liu, Wei Zhong, Zhongxuan Luo
  • Patent number: 11825231
    Abstract: A method of identifying a background type in a photograph includes extracting a background image from a photograph, feeding the background image into a first convolution neural network to obtain a first decision, extracting color features in the background image, transforming the color features into a two-dimensional color feature matrix, feeding the two-dimensional color feature matrix into a second convolution neural network to obtain a second decision by the one or more computer processors, extracting texture features in the background image, transforming the texture features into a two-dimensional texture feature matrix image by the one or more computer processors, feeding the two-dimensional texture feature matrix into a third convolution neural network to obtain a third decision, computing a hybrid decision based on the first decision, the second decision, and the third decision, and identifying a background type in the background image based on the hybrid decision.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: November 21, 2023
    Assignee: Shutterfly, LLC
    Inventor: Leo Cyrus
  • Patent number: 11806189
    Abstract: For three-dimensional segmentation from two-dimensional intracardiac echocardiography imaging, the three-dimension segmentation is output by a machine-learnt multi-task generator. Rather than the brute force approach of training the generator from 2D ICE images to output a 2D segmentation, the generator is trained from 3D information, such as a sparse ICE volume assembled from the 2D ICE images. Where sufficient ground truth data is not available, computed tomography or magnetic resonance data may be used as the ground truth for the sample sparse ICE volumes. The generator is trained to output both the 3D segmentation and a complete volume (i.e., more voxels represented than in the sparse ICE volume). The 3D segmentation may be further used to project to 2D as an input with an ICE image to another network trained to output a 2D segmentation for the ICE image. Display of the 3D segmentation and/or 2D segmentation may guide ablation of tissue in the patient.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: November 7, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Gareth Funka-Lea, Haofu Liao, Shaohua Kevin Zhou, Yefeng Zheng, Yucheng Tang