Patents Examined by Atul P Khare
  • Patent number: 11148362
    Abstract: A rotary additive manufacturing system for producing 3D parts in a layer-wise manner includes a silo support, a tool support, a plurality of silos, and a part developer. The tool support overlays a first side of the silo support, and is configured to rotate about a central axis relative to the silo support. The silos are each attached to the silo support and extend along the central axis from a second side of the silo support that is opposite the first side. The part developer is supported by the tool support, and is configured to build a 3D part within each of the silos in a layer-by-layer manner during rotation of the tool support relative to the silo support.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: October 19, 2021
    Assignee: Stratasys, Inc.
    Inventors: Sydney Crump, S. Scott Crump
  • Patent number: 11148357
    Abstract: A method of making a composite article comprised of a first component (10) and a second component (30) includes (a) providing a first component (10) and an optically transparent member (22) having a build surface with the first component having a first three-dimensional interfacing segment formed thereon; (b) immersing the first three-dimensional interfacing segment in polymerizable liquid (21); (c) forming an intermediate object by irradiating a build region with light through an optically transparent member and also advancing the first three-dimensional component and the build surface away from one another to form from the polymerizable liquid (21) a second component (30) on said first three-dimensional interfacing segment, with the second component including a second three-dimensional interfacing segment in contact with the first three-dimensional interfacing segment; then (d) optionally washing the intermediate; and then (e) further solidifying the second three-dimensional component (30) on said first thr
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: October 19, 2021
    Assignee: Carbon, Inc.
    Inventors: David Moore, Matthew Jeffery Garrity, William Joseph Stark, Sean Friedrich Walter McCluskey
  • Patent number: 11141911
    Abstract: A system for manufacturing a three-dimensional article includes a resin vessel, a vertical movement mechanism, and a light engine. The resin vessel includes a lower opening closed by a transparent sheet. The vertical movement mechanism is for positioning a support tray which supports the three-dimensional article. The light engine is disposed below the transparent sheet and is configured to selectively harden layers of resin over a build plane above the transparent sheet. The light engine includes a light bar coupled to a lateral movement mechanism. The light bar includes an array of light emitting devices and a device for impinging upon the transparent sheet. The impingement maintains a proper operating distance H between the transparent sheet and the build plane.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: October 12, 2021
    Assignee: 3D Systems, Inc.
    Inventors: Peter Scott Turner, David Sabo
  • Patent number: 11135790
    Abstract: Provided herein are methods of forming a three-dimensional object, which may be carried out by: (a) forming a three-dimensional intermediate by polymerization of a polymerizable liquid in an additive manufacturing process, the polymerizable liquid comprising a light polymerizable component; then (b) contacting at least a portion of the three-dimensional intermediate to a penetrant fluid, the penetrant fluid carrying a solidifiable component, the contacting step carried out under conditions in which the solidifiable component penetrates into the three-dimensional intermediate; (c) optionally but preferably separating the three-dimensional intermediate from the penetrant fluid; and then (d) solidifying and/or curing the solidifiable component in the three-dimensional intermediate to form the three-dimensional object.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 5, 2021
    Assignee: Carbon, Inc.
    Inventors: Bob E. Feller, Kai Chen, Jason P. Rolland
  • Patent number: 11123918
    Abstract: A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 21, 2021
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11123919
    Abstract: A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: September 21, 2021
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11121360
    Abstract: Provided is a process for producing a graphene-based supercapacitor electrode from a supply of coke or coal powder, comprising: (a) exposing this powder to a supercritical fluid for a period of time in a pressure vessel to enable penetration of the supercritical fluid into internal structure of the coke or coal; wherein the powder is selected from petroleum coke, coal-derived coke, meso-phase coke, synthetic coke, leonardite, anthracite, lignite coal, bituminous coal, or natural coal mineral powder, or a combination thereof; (b) rapidly depressurizing the supercritical fluid at a fluid release rate sufficient for effecting exfoliation and separation of the coke or coal powder to produce isolated graphene sheets, which are dispersed in a liquid medium to produce a graphene suspension; and (c) shaping and drying the graphene suspension to form the supercapacitor electrode having a specific surface area greater than 200 m2/g.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: September 14, 2021
    Assignee: Nanotek Instruments Group, LLC
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11110662
    Abstract: A method of printing a hollow part with a robotic additive manufacturing system includes extruding thermoplastic material onto a build platform movable in at least two degrees of freedom in a helical pattern along a continuous 3D tool path with an extruder mounted on a robotic arm, to thereby print a hollow member having a length and a diameter. The method includes orienting the hollow member during printing by moving the build platform based on a geometry of the hollow member wherein the movement of the build platform and the movement of the robotic arm are synchronized to print the part without support structures.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: September 7, 2021
    Assignee: Stratasys, Inc.
    Inventor: Clint Newell
  • Patent number: 11111146
    Abstract: A method of manufacturing a carbon nanotube product comprising: blending an unaligned carbon nanotube material with solid solvent particles; activating a nanotube solvent by liquefying the solid solvent particles; producing a nanotube dope solution by mixing the nanotube solvent and the unaligned carbon nanotube material; forming a carbon nanotube proto-product by extruding the nanotube dope solution; and forming an aligned carbon nanotube product by solidifying the carbon nanotube proto-product.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: September 7, 2021
    Assignee: WOOTZ, LLC
    Inventors: Elie Amram Bengio, Alexander Joseph Marks
  • Patent number: 11097478
    Abstract: A system and corresponding method to move a rod of build material in a three-dimensional (3D) printing system uses a pusher. The rod of build material has distal and proximal ends relative to an extrusion head. The distal and proximal ends having distal and proximal end surfaces, respectively. The pusher engages with the rod and applies an axial force to at least a portion of the distal end surface of the rod for at least a portion of a path the rod travels toward the extrusion head. The axial force actuates the rod of build material without alteration, such as by shaving, fracturing, or otherwise deforming the rod of build material.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 24, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Richard Burnham, John LaPlante, Aaron Preston
  • Patent number: 11097477
    Abstract: A system and corresponding method to move a rod of build material in a three-dimensional (3D) printing system uses a pusher. The rod of build material has distal and proximal ends relative to an extrusion head. The distal and proximal ends having distal and proximal end surfaces, respectively. The pusher engages with the rod and applies an axial force to at least a portion of the distal end surface of the rod for at least a portion of a path the rod travels toward the extrusion head. The axial force actuates the rod of build material without alteration, such as by shaving, fracturing, or otherwise deforming the rod of build material.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 24, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Richard Burnham, John LaPlante, Aaron Preston
  • Patent number: 11097499
    Abstract: A method allows for preparation of CNT nanocomposites having improved mechanical, electrical and thermal properties. Structured carbon nanotube forms such as sheet, yarn, and tape are modified with ?-conjugated conductive polymers, including polyaniline (PANT), fabricated by in-situ polymerization. The PANI modified CNT nanocomposites are subsequently post-processed to improve mechanical properties by hot press and carbonization.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: August 24, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Jae-Woo Kim, Emilie J. Siochi, Kristopher E. Wise, John W. Connell, Yi Lin, Russell A. Wincheski, Dennis C. Working
  • Patent number: 11097479
    Abstract: A system and corresponding method to move a rod of build material in a three-dimensional (3D) printing system uses a pusher. The rod of build material has distal and proximal ends relative to an extrusion head. The distal and proximal ends having distal and proximal end surfaces, respectively. The pusher engages with the rod and applies an axial force to at least a portion of the distal end surface of the rod for at least a portion of a path the rod travels toward the extrusion head. The axial force actuates the rod of build material without alteration, such as by shaving, fracturing, or otherwise deforming the rod of build material.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 24, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Richard Burnham, John LaPlante, Aaron Preston
  • Patent number: 11084208
    Abstract: Methods and systems for fabricating a component by consolidating a first portion of a particulate include a louvered particulate containment wall positioned around the component and a second portion of the particulate. At least one louver is coupled to the particulate containment wall adjacent at least one opening in the particulate containment wall. The particulate containment wall is positionable between a first position in which the louver prevents the second portion of the particulate from flowing through the passage and a second position in which the second portion of the particulate is able to flow through the passage. The methods include switching the particulate containment wall from the first position to the second position and allowing the second portion of the particulate to flow out of the interior space through the at least one opening.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: August 10, 2021
    Assignee: General Electric Company
    Inventors: John Joseph Madelone, Jr., Adam G. Susong, Timothy Joseph Wilhelm, Andrew J. Martin, Donald Dana Lowe
  • Patent number: 11077592
    Abstract: A grip body of a body care article, such as toothbrush, includes a grip part, a neck part, and a head part. The grip body includes a first and a second material component of a thermoplastic plastic. Manufacturing of the grip body is performed via an injection moulding tool with at least one tool cavity, and the grip body including a first, second, and third material component of a first, second, and third thermoplastic material, respectively.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: August 3, 2021
    Assignee: TRISA HOLDING AG
    Inventors: Roger Kirchhofer, Michael Schär, Martin Zwimpfer, Peter Zurfluh
  • Patent number: 11072117
    Abstract: The invention relates to a platform device (4) for forming a three-dimensional article (2) in an additive manufacturing machine layer by layer by successive fusion of selected areas of powder layers (3), which selected areas correspond to successive layers of the three-dimensional article. The platform device (4) has a support member (5) with a surface (6) for receiving powder. The support member (5) is rotatable about a first rotation axis (13) extending in a direction (15) substantially perpendicular to the surface (6). The support member (5) and the first rotation axis (13) are rotatable about a second rotation axis (14) arranged substantially in parallel with and off-set to the first rotation axis (13).
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: July 27, 2021
    Assignee: Arcam AB
    Inventor: Calle Hellestam
  • Patent number: 11072873
    Abstract: An electrospinning device is provided with a container for holding a liquid comprising a polymer melt or a polymer solution, and a nozzle arranged to outlet a stream of the liquid from the container. A collector collects electro spun material during electrospinning so as to form a fibrous structure. The device comprises an optical measurement system that measures a baseline distance between the collector and the optical measurement system for at least one location on a surface of the collector, and also measures a momentary distance between the optical measurement system and a momentary top layer of the fibrous structure during the electrospinning process. A processor calculates a momentary thickness of the fibrous structure. Once a required thickness is reached the electrospinning can be stopped.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: July 27, 2021
    Assignee: Innovative Mechanical Engineering Technologies B.V
    Inventors: Paul Johannes Franciscus Maria Janssen, Ramon Hubertus Mathijs Solberg
  • Patent number: 11040477
    Abstract: A method of fabricating a container from a substantially tubular preform. The preform is preheated to a temperature above the glass-transition temperature of the preform and placed in an expansion zone configured to accommodate the preform and in fluid communication with the nozzle of an injection head. The expansion zone is disposed adjacent to the nozzle and about the longitudinal axis defined by the injection head. A volume of an injection liquid is injected from the injection head into the preform cavity of the preform while the preform is in the expansion zone and the preform is expanded, while still in the expansion zone, into a container. Concurrently with the injecting and expanding of the preform, the preform is heated by energizing a plurality of infrared-emitting elements disposed about the preform and projecting infrared radiation into the expansion zone.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: June 22, 2021
    Assignee: Discma AG
    Inventors: Guillaume Chauvin, Klaus Hartwig, Damien Kannengiesser
  • Patent number: 11034073
    Abstract: A pipe coupling for triple wall corrugated plastic pipe includes a triple wall corrugated bellmouth connector that is of a unitary construction with one end of the corrugated plastic pipe. This bellmouth connector is of higher strength and in cooperation with the two wall corrugated spigot provides a high strength coupling. This coupling includes the bellmouth connector and spigot that are made inline with the corrugated pipe. A method for the manufacture of the pipe includes controlling of an air pressure on the outside of a formed two wall corrugated pipe as an exterior third wall is secured thereto.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: June 15, 2021
    Inventors: Manfred A. A. Lupke, Stefan A. Lupke
  • Patent number: 11020879
    Abstract: A method of fabricating a composite structure includes laying at least one composite ply about a bladder, the bladder comprising a phase change material in a first phase having a first volume, positioning an outer mold about the bladder and the at least one composite ply, and curing the at least one composite ply to form the composite structure. Curing causes the phase change material contained within the bladder to change to a second phase to expand from the first volume to a second volume and apply a pressure to an interior surface of the composite ply and press an outer surface of the composite ply against the outer mold to form an interior cavity. The bladder is not removable from the formed interior cavity.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: June 1, 2021
    Assignee: SIKORSKY AIRCRAFT CORPORATION
    Inventor: Jonathan K. Garhart