Patents Examined by Austin Murata
  • Patent number: 12040505
    Abstract: A method for manufacturing an interfacial lithium fluoride layer for an electrochemical cell that cycles lithium ions is disclosed. In the method, a substrate is positioned in a reaction chamber of an atomic layer deposition reactor and a lithium fluoride (LiF) precursor is introduced into the reaction chamber such that the LiF precursor contacts and chemically reacts with functional groups on the substrate. Then, an oxidant is introduced into the reaction chamber to form a single molecular layer of lithium fluoride on the substrate. The lithium fluoride layer is formed on the substrate at a temperature of greater than or equal to about 110 degrees Celsius to less than or equal to about 250 degrees Celsius.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: July 16, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Biqiong Wang, Meinan He, Mei Cai, Andrew J. Galant, William Osad
  • Patent number: 12037681
    Abstract: Provided is a method for forming a silicon oxycarbonitride film (SiOCN) with varying proportions of each element, using a disilane precursor under vapor deposition conditions, wherein the percent carbon incorporation into the SiOCN film may be varied between about 5 to about 60%, by utilizing co-reactants chosen from oxygen, ammonia, and nitrous oxide gas. The carbon-enriched SiOCN films thus formed may be converted to pure silicon dioxide films after an etch stop protocol by treatment with O2 plasma.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: July 16, 2024
    Assignee: ENTEGRIS, INC.
    Inventors: Sungsil Cho, Seobong Chang, Jae Eon Park, Bryan C. Hendrix, Thomas H. Baum
  • Patent number: 12032124
    Abstract: Methods of processing coated articles, such as transparencies, are provided comprising flash annealing one or more layers of the coated article. The one or more layers may be reflective metallic layers, such as silver layers, or comprise a transparent conductive oxide, such as indium tin oxide, or a semiconductor.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: July 9, 2024
    Assignee: Vitro Flat Glass LLC
    Inventors: Ashtosh P. Ganjoo, Patrick Fisher, Sudarshan Narayanan
  • Patent number: 12027689
    Abstract: A main object of the present disclosure is to provide a method for producing an electrode of which uncoated part can stretch while inhibiting breakage.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: July 2, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomofumi Hirukawa, Kengo Haga
  • Patent number: 12021228
    Abstract: A method of producing a positive electrode material for a secondary battery includes preparing a lithium composite transition metal oxide containing nickel, cobalt, and manganese, forming a coating layer on a surface of the lithium composite transition metal oxide, and post-treating the lithium composite transition metal oxide having the coating layer formed thereon, wherein the post-treating is performed by exposing the lithium composite transition metal oxide having the coating layer formed thereon to moisture at a relative humidity of 10% to 50% at 25° C., and then heat treating the lithium composite transition metal oxide to remove residual moisture.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: June 25, 2024
    Assignee: LG Energy Solution, Ltd.
    Inventors: Gi Beom Han, Wang Mo Jung, Sang Wook Lee, Hak Yoon Kim, So Ra Baek, Jung Min Han
  • Patent number: 11993846
    Abstract: A method of preparing a positive electrode active material for a secondary battery includes preparing a lithium composite transition metal oxide which includes nickel, cobalt, and manganese and contains 60 mol % or more of the nickel among all metals except lithium, adding a moisture absorbent and the lithium composite transition metal oxide into an atomic layer deposition (ALD) reactor, and adding a coating metal precursor into the atomic layer deposition (ALD) reactor and forming a metal oxide coating layer on surfaces of particles of the lithium composite transition metal oxide by atomic layer deposition (ALD).
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: May 28, 2024
    Assignee: LG Energy Solution, Ltd.
    Inventors: Seul Ki Chae, Dae Jin Lee, Dong Hwi Kim, Jin Tae Hwang, Hyeong Il Kim, Wang Mo Jung, Dong Hun Lee
  • Patent number: 11984594
    Abstract: Provided are methods of preparing an electrochemically active cathode material including the steps of combining an alkali metal-containing nickel oxide having a formula A1?aNi1+aO2, wherein A comprises an alkali metal and 0<a?0.2, with a fluid composition including an oxidant comprising a peroxydisulfate salt, a monopersulfate salt, or a combination thereof to form a mixture, heating the mixture to a temperature of 50° C. or greater; and maintaining the mixture at the temperature for at least a period of time sufficient to form an alkali metal-deficient nickel oxide electrochemically active cathode material having a general formula AxHyNi1+aO2·nH2O, wherein A comprises an alkali metal; 0.08?x<0.2; 0?y<0.3; 0.02?a?0.2; and 0<n<2.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: May 14, 2024
    Assignee: DURACELL U.S. OPERATIONS, INC.
    Inventors: Fan Zhang, Paul A. Christian, Jennifer A. Nelson, David L. Anglin, Paul Wildgust, Thomas Baccaro
  • Patent number: 11974443
    Abstract: Disclosed is a fabrication method for constructing low-cost, morphologically stable, highly ordered, and crystalized layered organic solar cells. The method implements self-assembled molecular monolayers as building blocks (a bottom up strategy) to fabricate a device. This approach enables the creation of a layered material with desired morphology in a controlled way. In such geometry, optoelectronic and transport properties can be controlled by metal atom inclusions into the molecular monolayers, which presents a range of options in creating photo-sensitive molecular building blocks to cover a wide range of the solar spectra from IR to visible to UV.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: April 30, 2024
    Assignee: QATAR FOUNDATION FOR EDUCATION, SCIENCE AND COMMUNITY DEVELOPMENT
    Inventors: Hicham Hamoudi, Golibjon Berdiyorov
  • Patent number: 11966066
    Abstract: Systems and methods are provided for delivering material compositions comprising particularly-formed multi-layer micron-sized particles that are substantially transparent, yet that exhibit selectable coloration based on their physical properties suspended in substantially transparent matrix or binder materials to facilitate delivery onto substrates, particularly aerosol or aspirated delivery. The disclosed physical properties of the particles are controllably selectable refractive indices to provide an opaque-appearing energy transmissive material when pluralities of the particles are suspended in the substantially transparent matrix material. The multiply-layered (up to 30+ constituent layers) particles result in an overall particle diameter of less than 5 microns, substantially equivalent to paint pigment particles.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: April 23, 2024
    Assignee: Face International Corporation
    Inventors: Clark D Boyd, Bradbury R Face, Jeffrey D Shepard
  • Patent number: 11968787
    Abstract: A method of forming a transparent electrically conductive film including depositing a dispersion of metal nanowires onto a substrate surface, delivering a solution including a fusing agent in a solvent onto the substrate surface, and drying the substrate surface after depositing the metal nanowires and delivering the fusing agent solution to fuse at least some of the metal nanowires into the transparent electrically conductive film comprising a fused metal nanowire network.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: April 23, 2024
    Assignee: C3 Nano, Inc.
    Inventors: Ajay Virkar, Ying-Syi Li, Melburne C. LeMieux
  • Patent number: 11946133
    Abstract: A production method for a glass roll includes a start preparation step (S1) of feeding-out a first lead film (LF1) coupled to a starting end portion (GFa) of a first glass film (GF1) from an unwinding device (3) and allowing a winding device (8) to wind the first lead film (LF1 after passing of the first lead film (LF1) through a thermal film-forming device (4),). The start preparation step (S1) includes a temperature increasing step of causing the thermal film-forming device (4) to be increased in temperature to a film-forming temperature. The first glass film (GF1) reaches the thermal film-forming device (4) before the thermal film-forming device (4) is increased in temperature to the film-forming temperature.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: April 2, 2024
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Hiroki Mori, Takayoshi Saito, Naotoshi Inayama, Riku Yamashiro
  • Patent number: 11926716
    Abstract: The present invention provides multifunctional particulates that release one or more functional compounds in response to environmental triggers and whose external surface modification imparts secondary functionalities to a selected coating composition. For example, disclosed are hydrophobic particles having a smart release mechanism for anticorrosion compounds that release the anticorrosion compounds upon exposure to the local pH changes induced by corrosion processes. Formulations are disclosed for multifunctional smart particles having antimicrobial effects and protections as well.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: March 12, 2024
    Assignee: SynMatter LLC
    Inventors: Xuenjun Zhang, Benjamin Pearman
  • Patent number: 11916200
    Abstract: The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: February 27, 2024
    Inventors: David Cao, Cheng-Chieh Chao, Zhebo Chen, Lei Cheng, Niall Donnelly, Wes Hermann, Tim Holme, Tommy Huang, Kian Kerman, Yang Li, Harsh Maheshwari
  • Patent number: 11888102
    Abstract: In a method of manufacturing a cathode active material for a lithium secondary battery, a preliminary lithium metal oxide particle is prepared. The preliminary lithium metal oxide particle is cleaned using a boron compound cleaning solution. A cathode active material for a lithium secondary particle includes a lithium metal oxide particle where a ratio of a B+ peak intensity relative to a sum of peak intensities of Li+, B+ and LiB+ fragments by a TOF-SIMS analysis is in a range from 0.03% to 1.5%.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: January 30, 2024
    Assignee: SK On Co., Ltd.
    Inventors: Sang Bok Kim, Ji Hoon Choi, Jik Soo Kim, Mi Jung Noh, Dong Il Jang, Dong Wook Ha
  • Patent number: 11888144
    Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: January 30, 2024
    Assignee: 24M Technologies, Inc.
    Inventors: Alexander H. Slocum, Tristan Doherty, Ricardo Bazzarella, James C. Cross, III, Pimpa Limthongkul, Mihai Duduta, Jeffry Disko, Allen Yang, Throop Wilder, William Craig Carter, Yet-Ming Chiang
  • Patent number: 11888151
    Abstract: The present invention relates to a method of preparing a positive electrode which includes forming a solid electrolyte by mixing a lithium salt and a polymer for a solid electrolyte in a dry atmosphere, forming a dry mixture by stirring after adding a conductive agent and a positive electrode active material to the solid electrolyte in a dry atmosphere, and pressing after coating a current collector with the dry mixture.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: January 30, 2024
    Inventors: Chang Wan Koo, Ki Tae Kim, Sang Hoon Choy
  • Patent number: 11876208
    Abstract: The present invention is directed to battery technologies and processing techniques thereof. In various embodiments, ceramic electrolyte powder material (or component thereof) is mixed with two or more flux to form a fluxed powder material. The fluxed powder material is shaped and heated again at a temperature less than 1100° C. to form a dense lithium conducting material. There are other variations and embodiments as well.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: January 16, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Niall Donnelly, Timothy Holme
  • Patent number: 11876213
    Abstract: A method of making an electrode material for an electrode in an electrochemical cell that cycles lithium ions is provided, where a protective coating is applied to an electrode precursor material. The electrode precursor may be a silicon-containing composition. The protective coating is selected from the group consisting of: an oxide-based coating, a fluoride-based coating, and a nitride-based coating. The method also includes lithiating the electrode precursor material in a continuous process. The continuous process is conducted in a reactor having a first reaction chamber and a second reaction chamber to form a lithiated electrode material comprising the protective coating.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 16, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Xingyi Yang, Raghunathan K, Mark W. Verbrugge
  • Patent number: 11862782
    Abstract: The present invention relates to electrode slurry coating apparatus and method, the present invention ultimately allowing the process efficiency to be increased and rate of errors to be reduced when double-layer structured active material layers are formed by temporally adjusting the height of first and second discharge outlets through which active material is discharged.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: January 2, 2024
    Inventors: Taek Soo Lee, Young Joon Jo, Sang Hoon Choy, Ki Tae Kim, Ji Hee Yoon, Cheol Woo Kim
  • Patent number: 11855275
    Abstract: A method for preparing a cathode based on an aqueous slurry is provided. The cathode slurry with improved stability in water comprises a cathode active material, especially a nickel-containing cathode active material. Treatment of nickel-containing cathode active materials with lithium compounds may improve stability of the cathode by preventing undesirable decomposition of the material. In addition, battery cells comprising the cathode prepared by the method disclosed herein exhibit impressive electrochemical performances.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: December 26, 2023
    Assignee: GRST International Limited
    Inventors: Kam Piu Ho, Yingkai Jiang