Patents Examined by Austin Murata
  • Patent number: 11020905
    Abstract: Examples of additive manufacturing are described. In one example, a method comprises generating print data to cause application of fusing agent to a first region of a layer of build material of an object undergoing additive manufacturing, the first region corresponding to an inner region of an object undergoing additive manufacturing. The print data causes application of fusing agent and detailing agent to a second region of the layer, the second layer corresponding to a middle region of the object. The print data causes application of detailing agent to a third region of the layer, the third region corresponding to an outer layer of the object. Fusing energy is applied to the layer.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: June 1, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Pol Fornos, Manuel Freire, Luis Garcia
  • Patent number: 10999934
    Abstract: The present invention relates to a metal oxide nanoparticle ink composition, a method of producing the same, and a method of forming a conductive layer pattern by using the metal oxide nanoparticle ink composition, and more particularly, to a metal oxide nanoparticle ink composition for forming a conductive layer by irradiating an ink composition thin film containing nickel oxide nanoparticles with a sintering laser, a method of producing the same, and a method of forming a conductive layer pattern by using the metal oxide nanoparticle ink composition.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: May 4, 2021
    Assignee: GACHON UNIVERSITY OF INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventors: Daeho Lee, Nam Binh Vu
  • Patent number: 10995229
    Abstract: An inkjet method for producing a solder mask in the manufacture of a Printed Circuit Board uses a solder mask inkjet ink containing at least one photo-initiator, at least one free radical polymerizable compound and at least one mercapto functionalized carboxylic acid as adhesion promoter. A high quality solder mask withstanding the high thermal stress during the soldering process while maintaining excellent physical properties is produced.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: May 4, 2021
    Assignees: AGFA-GEVAERT NV, ELECTRA POLYMER LTD.
    Inventors: Rita Torfs, Marion Sauvageot, Johan Loccufier
  • Patent number: 10991911
    Abstract: The beneficial effects of the present application are as follows: the modified epoxy resin is doped with the modified epoxy resin in the buffer layer, the modified epoxy resin is reacted with the first barrier layer under UV irradiation, so that the modified epoxy resin is adhered to the first barrier layer to adhere the buffer layer and the first barrier layer and solve the technical problem that the organic layer and the inorganic layer are easily peeled off in the prior art. The present application also provides a packaging method and an electronic device.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: April 27, 2021
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Tianfu Guo
  • Patent number: 10991944
    Abstract: The present invention relates to a method for making a novel cathode employing a monoclinic sulfur phase that enables a single plateau lithium-sulfur reaction in, for example, a carbonate electrolyte system. The cathode is applicable to a variety of other types of anodes. The method produces a cathode suitable for use in an electrode of a cell or battery by depositing monoclinic phase sulfur via vapor deposition onto a substrate in a sealed vapor deposition apparatus.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: April 27, 2021
    Assignee: Drexel University
    Inventors: Rahul Nagesh Pai, Vibha Kalra
  • Patent number: 10992279
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 27, 2021
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10991514
    Abstract: A method for producing an electrolytic capacitor includes: a first step of preparing an anode body, and forming a dielectric layer on a surface of the anode body; a second step of forming a first conductive polymer layer on a surface of the dielectric layer, the first conductive polymer layer including a first conductive polymer and a first silane compound; a third step of bringing the first conductive polymer layer into contact with a first treatment liquid; and a fourth step of providing a second silane compound to the first conductive polymer layer after the third step.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: April 27, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Nobuyuki Yamaguchi, Koji Fukuchi, Koji Okamoto, Tetsuro Iwasa, Takahiro Kobayashi, Yasuo Tanaka, Ryo Morioka
  • Patent number: 10974470
    Abstract: Shifting is a method for manipulating unidirectional non-crimp fabrics that allows for a curved fiber path along with compound surface geometry. The bases for shifting is understanding unidirectional (UD) non-crimp-fabrics (NCFs) as a semi-flexible prismatic linkage and planning manipulations such that the array of linkages can conform to the surface geometry and path plan within allowable manufacturing tolerances. This has applications in structural composite components such as the current trailing edge prefabricated unidirectional components for wind turbine blades, and for future wind turbine blade designs including a curve-linear spar cap.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: April 13, 2021
    Assignee: TPI Composites, Inc.
    Inventor: Corey Magnussen
  • Patent number: 10979011
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: April 13, 2021
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10964856
    Abstract: Disclosed herein is a method of preparing a white light-emitting material. The method of preparing a white light-emitting material includes the steps of: (a) depositing a metal for the formation of a blue light-emitting material on a substrate by performing thermal evaporation; (b) forming a material in which green and blue light-emitting materials are hybridized by placing the substrate, on which the metal film is deposited in step (a), in a plasma-enhanced chemical vapor deposition (PECVD) reactor and exposing the substrate to silicon (Si) and oxygen (O) in a plasma state; and (c) forming a red light-emitting material in the material formed in step (b) by annealing the material formed in step (b) so that the red, green and blue light-emitting materials are hybridized.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: March 30, 2021
    Assignee: KNU-INDUSTRY COOPERATION FOUNDATION
    Inventor: Jong Hwan Yoon
  • Patent number: 10962498
    Abstract: A method for producing an insulated electric wire includes a step of preparing a conductor having a linear shape; a step of forming an insulating coating so as to cover a surface on an outer peripheral side of the conductor to obtain an insulated electric wire that includes the conductor and the insulating coating covering the conductor; and a step of measuring a first electrostatic capacity between the insulated electric wire and a first electrode disposed outside in a radial direction of the insulated electric wire so as to face an outer peripheral surface of the insulated electric wire while transporting the insulated electric wire in a longitudinal direction of the conductor, and inspecting a formation state of the insulating coating, the formation state including a formation state of a defective portion in the insulating coating, on the basis of a change in the first electrostatic capacity.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: March 30, 2021
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC WINTEC, INC.
    Inventors: Shinya Ota, Masaaki Yamauchi, Jun Sugawara, Yasushi Tamura, Kengo Yoshida, Takao Inoue, Hiroji Sugimoto
  • Patent number: 10960598
    Abstract: Provided are: an imprinting method which suppresses volatilization of a photocurable resin applied on a transfer-receiving substrate by an inkjet method, satisfactorily maintains the wet-spreading property of the resin at the time of transfer, maintains cleanness of the environment for transfer, and can fill the environment for transfer with a particular gas appropriate for transfer; and an imprinting apparatus. Disclosed is an imprinting method of using a template having a concavo-convex pattern formed thereon, and transferring the pattern of the template by imprinting to a photocurable resin on a transfer-receiving substrate, characterized in that, in a space where the template and the photocurable resin are brought into contact, clean air is sent to the space through an air blowing port during a standby mode of not performing imprinting, and the flow rate of clean air in the space is reduced or clean air is not sent during an imprinting mode.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: March 30, 2021
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventors: Hirokazu Oda, Takaharu Nagai, Saburou Harada
  • Patent number: 10957467
    Abstract: A polymeric coating can be applied to an overhead conductor. The overhead conductor includes one or more conductive wires, and the polymeric coating layer surrounds the one or more conductive wires. The overhead conductor can operate at a lower temperature than a bare overhead conductor with no polymeric coating layer when tested in accordance with ANSI C119.4 method. Methods of applying a polymeric coating layer to an overhead conductor are also described herein.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: March 23, 2021
    Assignee: GENERAL CABLE TECHNOLOGIES CORPORATION
    Inventors: Sathish Kumar Ranganathan, Vijay Mhetar, Srinivas Siripurapu, Cody R. Davis, Frank E. Clark
  • Patent number: 10946556
    Abstract: The invention relates to a casting mold, in particular for use in cold casting methods, which is produced with the aid of a powder-based layering method, the final casting mold having a treated surface.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: March 16, 2021
    Assignee: VOXELJET AG
    Inventors: Ingo Ederer, Daniel G√ľnther, Anton Gruber
  • Patent number: 10947402
    Abstract: An inkjet method for producing a solder mask in the manufacture of a Printed Circuit uses a solder mask inkjet ink containing at least one photo-initiator, at least one free radical polymerizable compound and at least one allyl sulfone compound as adhesion promoter. A high quality solder mask withstanding the high thermal stress during the soldering process while maintaining excellent physical properties is produced.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: March 16, 2021
    Assignees: AFGA-GEVAERT NV, ELECTRA POLYMER LTD
    Inventors: Johan Loccufier, Rita Torfs, Marion Sauvageot
  • Patent number: 10937572
    Abstract: A method for forming an article of manufacture using additive manufacturing, includes: a processor executing program instructions to: (a) rotate an object continuously about a horizontal axis using a first rotational stage, wherein the object is partially submerged in a bath of energy curable liquid formulation during the rotation; (b) control a rate of rotation of the object to achieve a desired radial thickness of a sub layer of uncured liquid formulation at a desired rotational location on the object; (c) direct an energy source to provide an energy dose onto the object at a desired rotational location, wherein the energy dose is configured to cure and solidify the sub layer; and repeat (a), (b) and (c) until a desired radial thickness of a cured liquid formulation layer is a achieved.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: March 2, 2021
    Assignee: ABB Power Grids Switzerland AG
    Inventors: Elio Alberto Perigo, Kathryn F. Murphy, Cherif Ghoul, Jonah Kadoko, Matthew Hetrich, Nikolaus Zant, Krzysztof Kasza, Lukasz Matysiak, Robert Sekula, Lukasz Malinowski, Jens Rocks
  • Patent number: 10931251
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: February 23, 2021
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10905017
    Abstract: The disclosure relates to methods and compositions for direct printing of circuit boards having an electromagnetically-shielded tracks and/or components. Specifically, the disclosure relates to the direct, uninterrupted and continuous 3D printing of insulation-jacketed tracks and/or components with metallic shielding sleeves or capsule.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 26, 2021
    Assignee: Nano Dimension Technologies Ltd.
    Inventors: Avi Shabtai, Michael Partosh
  • Patent number: 10892422
    Abstract: A compound for an organic optoelectronic device represented by Chemical Formula 1: wherein groups X1 to X8, Y1, Y2, L1, L2, Ar1, Ar2, and variables m1, m2, n1, and n2 are described in the specification.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: January 12, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., CHEIL INDUSTRIES INC.
    Inventors: Kyu Young Hwang, O Hyun Kwon, Young Kwon Kim, Hyeon Ho Choi, Byoung Ki Choi
  • Patent number: 10887998
    Abstract: A method (200, 300, 500) for producing an electrically conductive pattern on substrate (202, 402), comprising: providing electrically conductive solid particles onto an area of the substrate in a predefined pattern (508), where the pattern (403) comprises a contact area (404B) for connecting to an electronic component and a conductive structure (404A) having at least a portion (414) adjacent to the contact area, heating the conductive particles to a temperature higher than a characteristic melting point of the particles to establish a melt (510), and pressing the melt against the substrate in a nip, the temperature of the contact portion of which being lower than the aforesaid characteristic melting point so as to solidify the particles into essentially electrically continuous layer within the contact area and within the conductive structure in accordance with the pattern (512), wherein the thermal masses of the contact area and the at least adjacent portion of the conductive structure are configured substant
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: January 5, 2021
    Assignee: Stora Enso OYJ
    Inventors: Juha Maijala, Petri Sirviö