Patents Examined by Azim Rahim
  • Patent number: 8261565
    Abstract: A cooling system for transferring heat from a heat load to an environment has a volatile working fluid. The cooling system includes first and second cooling cycles that are thermally connected to the first cooling cycle. The first cooling cycle is not a vapor compression cycle and includes a pump, an air-to-fluid heat exchanger, and a fluid-to-fluid heat exchanger. The second cooling cycle can include a chilled water system for transferring heat from the fluid-to-fluid heat exchanger to the environment. Alternatively, the second cooling cycle can include a vapor compression system for transferring heat from the fluid-to-fluid heat exchanger to the environment.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: September 11, 2012
    Assignee: Liebert Corporation
    Inventors: Steven A Borror, Franklin E DiPaolo, Thomas E Harvey, Steven M Madara, Reasey J Mam, Stephen C Sillato
  • Patent number: 8196422
    Abstract: The present invention is directed at a solar powered heat exchange system preferably used to drive a water collection device, which condenses water vapor in atmospheric air to water. The device comprises means for drawing the atmospheric air into the device; means for condensing the moisture vapor in the atmospheric air into water; and means for collecting the water.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 12, 2012
    Inventor: Jonathan G. Ritchey
  • Patent number: 8171747
    Abstract: A refrigeration device includes a compression mechanism, a radiator, a first expansion mechanism (15), a liquid receiver (16), a second expansion mechanism, an evaporator, a temperature detector, a first pressure storing unit (23a), and a second pressure determining unit, a pressure detector, and a control unit (23c). The first pressure storing unit stores an upper limit and lower limit of an intermediate pressure. The second pressure determining unit determines an upper limit and lower limit of a high pressure based on the upper limit and lower limit of the intermediate pressure and on a temperature in a vicinity of an exit of the radiator. The control unit controls the first expansion mechanism and the second expansion mechanism so that a pressure detected by the pressure detector will be equal to or less than the upper limit and equal to or greater than the lower limit of the high pressure.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: May 8, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Toshiyuki Kurihara, Shinichi Kasahara
  • Patent number: 8172153
    Abstract: Controlling energy usage of a building. At least one temperature sensor monitors temperature within a zone of a building. A processor determines an off-peak temperature target as a function of a duration of an off-peak operating state of the monitored zone and a desired temperature within the monitored zone during a subsequent peak operating state of the monitored zone. A controller receives the determined off-peak temperature target and is responsive to the received off-peak temperature target to control the temperature within the monitored zone of the building during the off-peak operating state. Other aspects of the invention are directed to computer-readable media for controlling energy usage of a building as described.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: May 8, 2012
    Assignee: Kennedy Metal Products & Buildings, Inc.
    Inventors: William R. Kennedy, John Matthew Kennedy
  • Patent number: 8173897
    Abstract: A superconducting cable line includes a heat insulation pipe for a fluid for transporting liquid hydrogen, a superconducting cable housed in the heat insulation pipe for a fluid, and heat exchange means for performing a heat exchange between liquid hydrogen and a refrigerant of the cable. The superconducting cable includes a cable core inside a heat insulation pipe for a cable and is housed in the heat insulation pipe for a fluid to form a low temperature environment around the cable and a double heat insulation structure including the heat insulation pipe. Therefore, since heat intrusion into the superconducting cable is reduced and the refrigerant is cooled with liquid hydrogen, the line can reduce energy for cooling the refrigerant.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: May 8, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masayuki Hirose, Yuichi Yamada
  • Patent number: 8156755
    Abstract: The invention relates to a refrigerator for storing vials containing a (bio)pharmaceutical substance, in particular vaccines for animals, comprising a cabinet having an internal space for accommodating the vials arranged in columns, a cooling element for cooling the internal space and at least one door or dispenser for removing vials from the internal space. A plurality of guides located inside the space and adapted to slidingly accommodate columns of the vials. The invention further relates to a cartridge suitable for use in the said refrigerator.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: April 17, 2012
    Assignee: Intervet International B.V.
    Inventors: Stephen Murray, Gaynor Hillier, Philip Nigel Bordet-Stead, Tanja Langgner, David Helps
  • Patent number: 8151591
    Abstract: An air conditioning case houses an evaporator for an air conditioning system and a blower unit. A drainage hole for water that condenses on the evaporator is located between the evaporator and the blower unit. An extension wall shields the drainage hole from the air blown by the blower unit. A shielding wall shields a water channel located between the evaporator and the air conditioning case from the blower unit. A partition wall located within the water channel extends from the air conditioning case to the evaporator.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: April 10, 2012
    Assignee: DENSO International America, Inc.
    Inventors: Takeshi Nakamura, Scott Benedict
  • Patent number: 8136368
    Abstract: A modular evaporator which can be assembled from a number of standard modules is provided. Depending on the requirements, the modular evaporator can be assembled to meet a wide range of design cooling loads. Additionally, the modular evaporator is capable of generating and holding ice for thermal storage purposes, eliminating the need for external ice storage tanks. Furthermore, the heat transfer and thermal storage fluid for the evaporator can simply be water which considerably simplifies the system, lowers the cost, and increases the efficiency of the heat transfer loop.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: March 20, 2012
    Inventors: Daniel Reich, Michael Paul Burdett, Vladimir D. Reich
  • Patent number: 8136363
    Abstract: A method of conditioning air in a vehicle load space. The method includes providing a refrigeration circuit including an evaporator, directing refrigerant through the refrigeration circuit, directing load space air across the evaporator, sensing a first condition based on one of a temperature and a pressure of the refrigerant in the refrigeration circuit upstream from the evaporator, determining a second condition based on one of a temperature and a pressure of the refrigerant in the evaporator, determining a difference between the first condition and the second condition, and initiating a defrost process of the evaporator when the difference is greater than a threshold.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: March 20, 2012
    Assignee: Thermo King Corporation
    Inventor: Brad Ludwig
  • Patent number: 8125781
    Abstract: A semiconductor device comprises at least a semiconductor module including a semiconductor chip, a heat sink thermally connected to the semiconductor chip and a seal member for covering and sealing the semiconductor chip and the heat sink in such a manner as to expose the heat radiation surface of the heat sink. The radiation surface is cooled by a refrigerant. An opening is formed in a part of the seal member as a refrigerant path through which the refrigerant flows.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: February 28, 2012
    Assignee: DENSO CORPORATION
    Inventors: Kuniaki Mamitsu, Takanori Teshima
  • Patent number: 8114321
    Abstract: A method and apparatus are disclosed for managing thermal energy transfer between a mold, die or cavity and a thermal transfer fluid. The thermal energy being exchanged with the mold, die or cavity is calculated in real time as a function of the temperature differential between inlet and outlet fluid temperatures, the volumetric rate of fluid delivery, and known characteristics of the fluid. The rate of thermal energy exchange is controlled by varying the fluid delivery rate in accordance with a desired thermal energy exchange profile.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: February 14, 2012
    Assignee: MoldCool International, LLC
    Inventor: Kenneth E. Johnson
  • Patent number: 8109115
    Abstract: Refrigeration apparatus comprising a cold storage compartment, accessible from the outside, and provided internally with a sealed container adapted to accommodate a flexible and compressible receptacle holding a beverage; there are provided pneumatic or air-compression means to generate a selectively controllable pneumatic pressure inside said container, but outside said flexible receptacle, and said sealed container is capable of being opened from the outside by means of a closure applied on a face thereof, wherein said closure is provided with a through-aperture, through which there extends a drawing-off conduit. Whenever a need arises for beverage to be drawn off the receptacle, a pressure increase is triggered inside the sealed container, and said pressure increase will act upon the walls of the internal receptacle so that the latter is caused to collapse and reduce its volume, thereby causing the beverage to be ejected therefrom and, therefore, drawn off.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: February 7, 2012
    Assignee: Electrolux Professional SpA
    Inventors: Ennio Pippia, Deny Longo
  • Patent number: 8109105
    Abstract: In a refrigerating air conditioning system using refrigerant such as CO2 used in a supercritical area, a highly efficient refrigerating air conditioning system is provided by adjusting the amount of refrigerant in a radiator which contributes to the efficiency of the system stably and quickly. During heat utilizing operation, the superheat at the exit of an evaporator is controlled to a predetermined value by controlling the opening of an expansion valve provided on the upstream side of the evaporator, and an expansion valve is controlled so that the state of refrigerant in a connection pipe on the high-pressure side becomes a supercritical state. In this state, a flow rate control valve is controlled to change the density of the refrigerant stored in a refrigerant storage container and the amount of refrigerant existing in the radiator is adjusted.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: February 7, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Fumitake Unezaki, Tetsuji Saikusa, Takashi Okazaki, Makoto Saitou, Hirokuni Shiba, Sou Nomoto
  • Patent number: 8109108
    Abstract: A ventilation flow path through which air present in an internal space at an instrument panel is drawn and discharged to the outside of the cabin as a blower fan operates is formed in a ventilation mode without forming an air-conditioning flow path for blowing inside air or outside air into the cabin and the air-conditioning flow path is formed without forming the ventilation flow path in a mode other than the ventilation mode.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: February 7, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroki Nagayama, Hajime Kato, Teruaki Ishikawa
  • Patent number: 8096141
    Abstract: A control method regulates an electronic expansion valve of a chiller to maintain the refrigerant leaving a DX evaporator at a desired or target superheat that is minimally above saturation. The expansion valve is controlled to convey a desired mass flow rate, wherein valve adjustments are based on the actual mass flow rate times a ratio of a desired saturation pressure to the suction pressure of the chiller. The suction temperature helps determine the desired saturation pressure. A temperature-related variable is asymmetrically filtered to provide the expansion valve with appropriate responsiveness depending on whether the chiller is operating in a superheated range, a saturation range, or in a desired range between the two.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: January 17, 2012
    Assignee: Trane International Inc.
    Inventor: Joel C. VanderZee
  • Patent number: 8087261
    Abstract: A refrigerator is provided that includes a cold air duct that receives cold air circulating inside of a refrigerating chamber and a freezing chamber, an evaporator in the cold air duct, at least one defrosting heater in the cold air duct that selectively emits heat, a fan in the cold air duct, that selectively directs the cold air in an upward or downward direction, a motor that drives the fan, and an open/close device that closes a space having the evaporator, the defrosting heater, and the fan positioned therein selectively, thereby providing an improved defroster for an evaporator.
    Type: Grant
    Filed: October 11, 2004
    Date of Patent: January 3, 2012
    Assignee: LG Electronics Inc.
    Inventors: Sang Ik Lee, Bong Jun Choi, Jong Min Sin, Youngsan Jeon, Jae Seong Sim, Young Jeong
  • Patent number: 8051668
    Abstract: A controller comprises a first input that receives a signal indicating an energy consumption value of a compressor, a second input that receives a signal indicating an energy consumption value of a condenser fan, and an output that provides a control signal to the condenser fan. The controller also comprises a memory that stores a condenser set point, and a processor in communication with the input, output and memory and that modulates the condenser set-point to minimize energy consumption and controls the condenser fan based on the condenser set-point.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: November 8, 2011
    Assignee: Emerson Retail Services, Inc.
    Inventors: Abtar Singh, Thomas J. Mathews, Frank C. Brown, III, Ozgur Y. Gurkan
  • Patent number: 8047018
    Abstract: An ejector cycle system with a refrigerant cycle through which refrigerant flows includes an ejector disposed downstream of a radiator, a first evaporator located to evaporate refrigerant flowing out of the ejector, a branch passage branched from a branch portion between the radiator and a nozzle portion of the ejector and coupled to a refrigerant suction port of the ejector, a throttling unit located in the branch passage, and a second evaporator located downstream of the throttling unit to evaporate refrigerant. In the ejector cycle system, a variable throttling device is located in a refrigerant passage between a refrigerant outlet of the radiator and the branch portion to decompress the refrigerant flowing out of the radiator.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: November 1, 2011
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Etsuhisa Yamada, Naohisa Ishizaka, Hirotsugu Takeuchi, Takeyuki Sugiura, Takuo Maehara
  • Patent number: 8042347
    Abstract: A compressor inlet pressure estimation apparatus for a refrigeration cycle system is disclosed. An electronic control unit 14 uses Tefin_lag(N) as an actual corrected temperature Tefin_AD(N) during a period Tp1 included in the timing t1 to t2. During a period Tp2 included in the timing t1 to t2, Tefin_fwd(N) is used as the actual corrected temperature Tefin_AD(N). Thus, a highly accurate corrected temperature Tefin_AD(N) can be determined over the on period (t1 to t2) of a compressor 2. In addition, Tefin_fwd(N) is used as the actual corrected temperature Tefin_AD(N) during the off period (t2 to 3) of the compressor 2. As a result, a highly accurate corrected temperature Tefin_AD(N) can be determined over the whole period including the on and off periods of the compressor 2. In this way, a highly accurate estimated value Ps_es(N) of the refrigerant inlet pressure of the compressor 2 can be determined.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: October 25, 2011
    Assignee: DENSO CORPORATION
    Inventors: Yoshikatsu Sawada, Yasutane Hijikata
  • Patent number: 8037694
    Abstract: A floating system for liquefying natural gas comprising a vessel provided with a plant for liquefying natural gas having an inlet for natural gas and an outlet for liquefied natural gas, a feed supply system for supplying natural gas to the inlet of the plant, one or more storage tanks for storing liquefied natural gas, and an off-loading system for transporting liquefied natural gas between the storage tank(s) and a tanker, which floating system further comprises a vaporization system having an inlet for liquefied gas and an outlet for vapor.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: October 18, 2011
    Assignee: Shell Oil Company
    Inventor: David Bertil Runbalk