Patents Examined by Benjamin A Schiffman
  • Patent number: 10498203
    Abstract: A laminated rotor core (36) wherein permanent magnets (47) are inserted in respective magnet insertion holes (46) is disposed between and pressed by an upper die (37) and a lower die (29). The upper die (37) has resin reservoir pots (50) provided above the laminated rotor core (36) and at positions corresponding to the respective magnet insertion holes (46). Raw resin material put in the resin reservoir pots (50) is heated by the upper die (37). Subsequently, the resin material in a liquefied state is ejected from the resin reservoir pots (50) by plungers (52) that are inserted and moves vertically in the resin reservoir pots (50) and is directly filled in the magnet insertion holes (46). Consequently, the respective magnet insertion holes (46) are filled with the resin material more evenly and highly reliable products can be supplied at low cost.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: December 3, 2019
    Assignee: MITSUI HIGH-TEC, INC.
    Inventors: Satoshi Matsubayashi, Hirotoshi Mabu, Katsumi Amano, Atsushi Shiraishi
  • Patent number: 10485947
    Abstract: A method of manufacturing a medical elongated body including an inner layer, an outer layer covering the outside of the inner layer, and a reinforcement body provided between the inner layer and the outer layer. The method includes an inner layer forming step of forming the inner layer, a reinforcement body forming step of forming the reinforcement body on an outer peripheral surface of the inner layer after the inner layer forming step, a cooling step of cooling at least a predetermined spot of the inner layer after the reinforcement body forming step, and an annealing step of annealing the reinforcement body which overlaps the predetermined spot of the inner layer cooled by the cooling step.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: November 26, 2019
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventor: Kouta Hamuro
  • Patent number: 10486359
    Abstract: Prepared is a film device (FD) in which a first thermoplastic film (141), a device layer (110) (i.e., a multi-layer product including a polyimide film and a device body), and a second thermoplastic film (142) are arranged. The film device (FD) is pressed against a forming mold (150) and heated at a lower temperature than the temperature limit of the polyimide film, such that the first thermoplastic film is stretched to conform to the shape of the forming mold (150).
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: November 26, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventor: Kenji Misono
  • Patent number: 10487520
    Abstract: The invention comprises a concrete form. The form comprises a first concrete forming panel having a first primary surface adapted for forming and contacting plastic concrete and a second primary surface opposite the first primary surface; a layer of insulating material contacting and substantially covering the second primary surface of the first concrete forming panel; and an insulating blanket adjacent the first concrete forming panel. A method of using the concrete form is also disclosed.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: November 26, 2019
    Inventor: Romeo Ilarian Ciuperca
  • Patent number: 10486357
    Abstract: An apparatus for shaping plastic preforms into plastic containers is disclosed. Said apparatus comprises a conveying device on which a plurality of blowing stations are arranged. Each of said blowing stations encompasses a blow mold, within which a plastic preform can be shaped into a plastic container. The apparatus further comprises a clean chamber, within which the plastic preforms can be conveyed. According to the invention, the zone of the conveying device in which the blowing stations are arranged is located in the clean chamber, and at least one additional zone of the conveying device is located outside the clean chamber.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 26, 2019
    Assignee: KRONES AG
    Inventors: Oliver Martini, Michael Dahmen, Patrick Engelhard
  • Patent number: 10471655
    Abstract: A method of forming a three-dimensional object is carried out by: (a) providing a cyanate ester dual cure resin; (b) forming a three-dimensional intermediate from said resin, where said intermediate has the shape of, or a shape to be imparted to, said three-dimensional object, and where said resin is solidified by exposure to light; (c) optionally washing the three-dimensional intermediate, and then (d) heating and/or microwave irradiating said three-dimensional intermediate sufficiently to further cure said resin and form said three-dimensional object. Compositions useful for carrying out the method, and products made from the method, are also described.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 12, 2019
    Assignee: Carbon, Inc.
    Inventors: Matthew S. Menyo, Jason P. Rolland
  • Patent number: 10463456
    Abstract: The invention relates to a method for producing a dental prosthesis, wherein the dental prosthesis comprises a prosthetic base and a plurality of prosthetic teeth, wherein the method is carried out with the use of a virtual three-dimensional dental prosthesis model of the dental prosthesis which is to be produced, and wherein the virtual three-dimensional dental prosthesis model comprises virtual prosthetic teeth and a virtual prosthetic base, including the following chronological steps: A) producing a physical occlusion plate, wherein a region of the surface of the occlusion plate is formed by a negative of the coronal sides of the virtual prosthetic teeth of the virtual dental prosthesis model, wherein the location and orientation of the virtual prosthetic teeth relative to one another corresponding to the virtual dental prosthesis model remain retained in the shape of the surface of the occlusion plate; B) placing and securing preassembled prosthetic teeth on the occlusion plate, wherein the coronal sid
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: November 5, 2019
    Assignee: Kulzer GmbH
    Inventors: Klaus Ruppert, Stefan Brill
  • Patent number: 10464262
    Abstract: An additive manufacturing system includes a laser device, a first scanning device, and an optical system. The laser device is configured to generate a laser beam, and the first scanning device is configured to selectively direct the laser beam across a powder bed. The laser beam generates a melt pool in the powder bed. The optical system includes an optical detector configured to detect electromagnetic radiation generated by the melt pool, and a second scanning device configured to direct electromagnetic radiation generated by the melt pool to the optical detector.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: November 5, 2019
    Assignee: General Electric Company
    Inventors: Mark Allen Cheverton, John Broddus Deaton, Jr.
  • Patent number: 10456975
    Abstract: A method of making a capsule comprising a plurality of compartments, the method comprising: initiating extrusion of a filament solution through a filament extruder; laying the filament solution to form a base of the capsule; forming a first compartment in the plurality of compartments, wherein the forming creates a first barrier wall having a first predetermined release time; forming a second compartment in the plurality of compartments, wherein the forming creates a second barrier wall having a second predetermined release time; filling the first compartment with a first material; filling the second compartment with a second material; and sealing the plurality of compartments thereby forming the capsule with a first sealed compartment and a second sealed compartment.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: October 29, 2019
    Assignee: Multiply Labs Inc.
    Inventors: Federico Parietti, Alice Melocchi, Lucia Zema, Andrea Gazzaniga
  • Patent number: 10450674
    Abstract: Provided herein are nanofibers comprising carbon precursors, nanofibers comprising carbon matrices, and processes for preparing the same. In specific examples, provided herein are high performance lithium ion battery anodic nanofibers comprising non-aggregated silicon domains in a continuous carbon matrix.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: October 22, 2019
    Assignee: CORNELL UNIVERSITY
    Inventors: Yong Lak Joo, Kyoung Woo Kim, Yong Seok Kim
  • Patent number: 10441033
    Abstract: The invention relates to footwear and portions thereof having structural features and decorative designs thereon, and related systems and methods for manufacturing same. An exemplary method for providing a feature on a surface of an object includes positioning a laser proximate the surface of the object, directing a laser beam from the laser to the surface of the object to mark or engrave at least a portion of the surface of the object, and moving at least one of the laser and the object to create a pattern on the surface of the object, the pattern providing at least one of an aesthetic and a structural feature on the surface of the object.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 15, 2019
    Assignee: New Balance Athletics, Inc.
    Inventors: Tim Downing, Troy Schubert, Drew Spieth, Thomas Ceurvels, Adan Wang, Kingsly Rao
  • Patent number: 10442143
    Abstract: The present invention provides a method for manufacturing a fiber-reinforced resin substrate or a resin molded body, the method being capable of effectively performing impregnation of a reinforcing fiber material with a thermoplastic resin and having high productivity and economical efficiency, and an extruder for use in the manufacturing method. The manufacturing method of the invention is a method for manufacturing a fiber-reinforced resin substrate or resin molded body obtained by impregnating a reinforcing fiber material with a thermoplastic resin, including placing the reinforcing fiber material on a molten resin of the thermoplastic resin and pressurizing the same to impregnate the reinforcing fiber material with the molten thermoplastic resin, and subsequently, cooling and solidifying the reinforcing fiber material impregnated with the molten thermoplastic resin.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: October 15, 2019
    Assignee: THE JAPAN STEEL WORKS, LTD.
    Inventors: Akio Ono, Shoso Nishida, Hiroshi Ito, Takuya Niyama
  • Patent number: 10433939
    Abstract: This invention designs and builds multiple layers (two layers or more) of millable dental blocks or disks for milling of various dental devices, specifically denture base blocks or disks of denture base material, where milled teeth cavities to receive artificial denture tooth materials to form final dental devices, such as partial and full dentures. This invention also designs and builds multiple layers (two layers or more) of millable denture base or denture blocks or disks comprised of denture base or/and denture tooth materials to form final dental devices, such as partial and full dentures. A method for manufacturing a layered denture is provided. The invention provides a multiple layered denture base block (or disk) for milling a denture base. The invention also provides a multiple layered denture block (or disk) for milling a denture. Highly shape adjustable or shape memory polymer layer(s) may be used in these multiple layered forms.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: October 8, 2019
    Assignee: DENTSPLY SIRONA Inc.
    Inventors: Benjamin Jiemin Sun, Dan Ammon
  • Patent number: 10436353
    Abstract: A continuous reinforced cold water pipe (CWP) for an Ocean Thermal Energy Conversion (OTEC) system is formed from a sequential series of molded pipe sections, which are formed from a series of rigid frame sections and a curable material to form the continuous reinforced CWP. Each molded pipe section is formed by moving a rigid frame section into a mold, enclosing at least a portion of the rigid frame section in the curable material, and curing the curable material. As each molded pipe section is moved out of the mold, the next sequential rigid frame section, which is connected to the previous rigid frame section, is moved into the mold. The cycle is repeated as many times as required to form the continuous reinforced CWP having a desired length.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: October 8, 2019
    Assignee: Lockheed Martin Corporation
    Inventors: Scott M. Maurer, Eugene C. Jansen
  • Patent number: 10428443
    Abstract: The invention relates to a device for producing a spun-bonded web from filaments, comprising spinnerets, a cooling chamber into which process air can be introduced in order to cool the filaments, a monomer suction device arranged between the spinnerets and the cooling chamber, a stretching unit, and a placing device for placing the filaments so as to form the spun-bonded web. The cooling chamber is divided into two cooling chamber portions. Process air can be suctioned out of a first upper cooling chamber portion to the monomer suction device with a volumetric flow rate Vm, and process air exits the first upper cooling chamber portion into a second lower cooling chamber portion with a volumetric flow rate V1. The volumetric flow rate ratio VM/V1 is 0.1 to 0.3.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: October 1, 2019
    Assignee: REIFENHAEUSER GMBH & CO. KG MASCHINENFABRIK
    Inventors: Claudio Cinquemani, Detlef Frey, Hans-Georg Geus, Peter Schlag
  • Patent number: 10427331
    Abstract: Disclosed are methods of manufacturing a SH surface including: creating a master with SH features by: depositing a rigid material onto a first surface, wherein the first surface is a shrinkable platform; shrinking the first surface by heating to create a SH surface, wherein the SH surface has micro- and nano-scale structural features that trap air pockets and prevent water from wetting the surface; forming the master by molding an epoxy with the shrunken first surface having a SH surface, wherein the master acquires the SH features of the first surface; and imprinting the SH features of the master onto a second surface to impart the SH features of the master onto the second surface. Some embodiments relate to a superhydrophobic (SH) surface, an article including a SH surface as disclosed, such as a microfluidic device or a food container.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: October 1, 2019
    Assignees: The Regents of the University of California, VTT Technical Research Centre of Finland Ltd.
    Inventors: Jolie McLane, Michelle Khine, Ralph Liedert
  • Patent number: 10421226
    Abstract: There is provided a mold stack (100). The mold stack (100) comprises a core insert assembly (102), the core insert assembly (102) for defining an inner portion of a molded article to be molded. The core insert assembly (102) includes a sensor assembly (120) configured to measure the in-mold pressure using entire active surface of the core insert assembly (102).
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: September 24, 2019
    Assignee: HUSKY INJECTION MOLDING SYSTEMS LTD.
    Inventors: Sebastien Sang Nguyen-Hoang, Jean-Christophe Witz, Ralf Walter Fisch
  • Patent number: 10421222
    Abstract: A method for manufacturing a watertight zipper solves the problem of low watertight effect of the modern watertight zipper. The method includes producing a waterproof stringer tape and forming a waterproof layer by injection molding. The waterproof layer covers a lateral edge of the waterproof stringer tape and includes a plurality of recesses. The method for manufacturing the watertight zipper further includes forming an aperture in each of the plurality of recesses. The aperture extends through the waterproof layer and the waterproof stringer tape. The method for manufacturing the watertight zipper further includes forming a plurality of scoops in the plurality of recesses by injection molding.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: September 24, 2019
    Assignee: Unitech Zipper & Machinery Co., Ltd.
    Inventor: Jung-Yuan Cheng
  • Patent number: 10414112
    Abstract: A nitrile-rubber medical exam glove composed of a glove body which is a flexible layer of nitrile-butadiene rubber. The glove body has a chlorinated first surface forming a donning side of the glove body and an un-chlorinated second surface forming a grip side of the glove body. The elastomeric glove also includes a substantially uniform distribution of a release agent distributed over the un-chlorinated second surface of the glove body. The elastomeric glove has: (a) an average thickness of between about 0.03 to 0.12 mm in a palm region of the glove body as measured in accordance with ASTM D3767, procedure A; (b) an un-chlorinated second surface of the glove body characterized by a Surface Root Mean Square Roughness of from about 3.00 μm to about 6.55 μm; and (c) a failure rate of less than about 1 percent when the elastomeric glove is subjected to pinhole leak testing generally in accordance with ASTM D5151-06.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: September 17, 2019
    Assignee: O&M Halyard, Inc.
    Inventors: Timothy M. Lipinski, Choong Kheng Tang
  • Patent number: 10408423
    Abstract: An ultraviolet (UV) curing system is configured to cure a composite structure. The UV curing system includes a plurality of UV light assemblies that are configured to adaptively conform to a shape of the composite structure. A UV curing method is configured to cure a composite structure. The UV curing method includes positioning a UV curing system on the composite structure, and adaptively conforming a plurality of UV light assemblies of the UV curing system to a shape of the composite structure.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: September 10, 2019
    Assignee: The Boeing Company
    Inventors: Justin Register, David Reed