Patents Examined by Berhanu Tadese
  • Patent number: 11973566
    Abstract: Systems, devices, and methods are provided for a wireless radio repeater for integration in an electric power distribution system. Such a system may include an electrical measurement device and a wireless radio repeater. The electrical measurement device may be installed on a power line of an electric power distribution system, obtain an electrical measurement of the power line of the electric power distribution system, and transmit a wireless message indicating the electrical measurement. The wireless radio repeater may receive the wireless message from the electrical measurement device and re-transmit the wireless message to a control system of the electric power distribution system or to another wireless radio repeater to assist in sending the wireless message to the control system of the electric power distribution system.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: April 30, 2024
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Miralem Cosic, Raymond W. Rice
  • Patent number: 11962369
    Abstract: The wireless communications system comprises: a plurality of remote units, wherein each remote unit is configured to convert a respective RF signal into a plurality of time and frequency samples, perform a noise estimation corresponding to the plurality of time and frequency samples, compute a plurality of coefficients corresponding to the plurality of time and frequency samples that have an amplitude greater than at least a predefined threshold value, and multiply each of the plurality of coefficients by its corresponding time and frequency sample to create a plurality of weighted time and frequency samples; at least an intelligent switching unit, coupled to the plurality of remote units, wherein the intelligent switching unit is configured to receive the plurality of weighted time and frequency samples from each of the plurality of remote units, temporally align the pluralities of weighted time and frequency samples, compute a set of weighted sums of time and frequency samples and transmit the set of weight
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: April 16, 2024
    Assignee: Teko Telecom S.r.l.
    Inventors: Massimo Notargiacomo, Giulio Gabelli, Fabrizio Marchese, Alessandro Pagani, Davide Durante, Lorenzo Minghini
  • Patent number: 11955727
    Abstract: Systems and methods are provided for a digital beamformed phased array feed. The system may include a radome configured to allow electromagnetic waves to propagate; a multi-band software defined antenna array tile; a power and clock management subsystem configured to manage power and time of operation; a thermal management subsystem configured to dissipate heat generated by the multi-band software defined antenna array tile; and an enclosure assembly. The multi-band software defined antenna array tile may include a plurality of coupled dipole array antenna elements; a plurality of frequency converters; and a plurality of digital beamformers.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: April 9, 2024
    Assignee: BlueHalo, LLC
    Inventors: Michael Thomas Pace, David Gregory Baur, Theodore Lyman Schuler-Sandy, William Kennedy, Jeffrey Gerard Micono, William Louis Walker, Garrett James Newell
  • Patent number: 11929798
    Abstract: A receiver system for correlating one or more signals (beam patterns) is disclosed. One or more antenna elements are configured to receive the signals. A controller generates correlator outputs based on a first set of duplicated signals, generates a first set of beams based on the one or more correlator outputs using a first beamforming module, generates a second set of beams based on a second set of duplicated signals using a second beamforming module, generates one or more power estimates based on the second set of beams, and divides each of the first set of beams by a corresponding power estimate to generate one or more normalized correlations.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 12, 2024
    Assignee: Rockwell Collins, Inc.
    Inventors: Carlos J. Chavez, Sasha Oster
  • Patent number: 11923890
    Abstract: A wireless communication apparatus includes a first conductor and a second conductor that function as a set of electrodes for wireless communication, a third conductor and a fourth conductor that function as another set of electrodes for wireless communication. A difference between a first distance between a centroid of the first conductor and a centroid of the third conductor and a second distance between a centroid of the second conductor and the centroid of the third conductor is less than a width of the first conductor and a width of the second conductor. A third distance between the centroid of the first conductor and a centroid of the fourth conductor is longer than the first distance. A fourth distance between the centroid of the second conductor and the centroid of the fourth conductor is longer than the second distance.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: March 5, 2024
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hitoshi Asai
  • Patent number: 11923924
    Abstract: A microcomponent massive MIMO array is presented. The microcomponent massive array includes a general purpose processor and an integrated power amplifier and transmitter device including a software defined radio (SDR) and a plurality of polar power amplifiers (PAs) disposed on a single integrated circuit, wherein the integrated power amplifier and transmitter device is in communication with the general purpose processor. The microcomponent massive MIMO array further includes an antenna array in communication with the integrated power amplifier and transmitter device.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: March 5, 2024
    Assignee: Parallel Wireless, Inc.
    Inventor: Steven Paul Papa
  • Patent number: 11916655
    Abstract: The invention relates to an OFDM-based transmitter (1000) for transmitting a multiplex (M1) of one or more radio information signals in a radio transmission mode via a transmission medium. According to the invention, the transmitter comprises an input (1002) for receiving the multiplex of radio information signals, an encoding unit (1006/1010) for encoding a block of data of the multiplex of radio information signals and for generating an encoded block of data (202), and a multiplexer unit (1012) for incorporating the encoded block of data in a media radio subframe of a radio transmission signal. According to the invention, the transmitter is furthermore designed to receive a second multiplex (M2) of one or more radio information signals.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: February 27, 2024
    Assignee: INSTITUT FÜR RUNDFUNKTECHNIK
    Inventors: Christian Menzel, Javier Morgade Prieto, Jordi Joan Gimenez Gandia
  • Patent number: 11909482
    Abstract: Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a client may determine, using a conditioning network and based at least in part on an observed environmental vector, a set of client-specific parameters. The client may determine a latent vector using a client autoencoder and based at least in part on the set of client-specific parameters and the set of shared parameters. The client may transmit the observed environmental vector and the latent vector to a server. Numerous other aspects are provided.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: February 20, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: June Namgoong, Taesang Yoo, Naga Bhushan, Jay Kumar Sundararajan, Pavan Kumar Vitthaladevuni, Krishna Kiran Mukkavilli, Hwan Joon Kwon, Tingfang Ji
  • Patent number: 11909496
    Abstract: Certain aspects of the present disclosure provide techniques for wireless communication by a user equipment (UE). For example, the UE receives a first indication indicating a same quasi co-location (QCL) mapping for multiple receive beams corresponding to a group of transmit and receive beam pairs from a network entity. Transmit and receive beam pairs are different from each other and grouping of the transmit and receive beam pairs is based on a distance between the UE and the network entity. The UE selects one of the multiple receive beams corresponding to the group of transmit and receive beam pairs, based on the distance between the UE and the network entity.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: February 20, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Vasanthan Raghavan, Tao Luo, Junyi Li, Mohammad Ali Tassoudji
  • Patent number: 11901931
    Abstract: Methods, systems, and devices for wireless communications are described. A user equipment (UE) may filter leaked power from a signal to accurately perform antenna compensation operations (e.g., apply a transmit gain, perform cable loss measurements) using valid power. A switch at the UE may leak power to an antenna for a transmission, and the UE may use a dynamic filtering algorithm to determine whether a pulse power of a detected signal is leaked or valid. The dynamic filtering algorithm may be able to account for variations in leaked power values, as leaked power may increase or decrease proportionally to intended power (e.g., from which power was leaked). By determining whether pulse power is leaked or valid, the UE may be able to filter out the leaked power and accurately perform antenna compensation operations such as applying a transmit gain for a transmission, performing a cable loss measurement, or the like.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: February 13, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Lei Sun, Sean Vincent Maschue, Cheng Tan, Bruce Charles Fischer, Jr., Brian French
  • Patent number: 11895303
    Abstract: A system and method for implementing a distributed source coding quantization scheme is provided. In one example, two independent but statistically correlated data sources can be asymmetrically compressed so that one source is compressed at a higher ratio than the other. The resulting signals are transmitted and decoded by a receiver. The highly compressed source can utilize the non-highly compressed source as side information so as to minimize the compression loss associated with the higher compression ratio. A conditional codebook can be created that not only depends on the highly compressed quantizer, but also depends on the quantized symbol received from the non-highly compressed data source.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: February 6, 2024
    Assignee: The MITRE Corporation
    Inventors: Robert M. Taylor, Jr., Jeffrey P. Woodard
  • Patent number: 11881882
    Abstract: In one implementation, a wireless communications terminal includes a multi-element antenna. In addition, the terminal includes preliminary signal combiners to combine received signals output by corresponding pairs of antenna elements. For each preliminary signal combiner, the signal output by a first of the pair of elements provides a model of interference present in the received signal output by the second of the pair of elements. The preliminary signal combiner is configured to combine the signal output by the first element with the signal output by the second element to produce an initial interference-mitigated signal.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: January 23, 2024
    Assignee: IRIDIUM SATELLITE LLC
    Inventor: Jeffrey Francis Bull
  • Patent number: 11870159
    Abstract: Systems and methods are provided for a digital beamformed phased array feed. The system may include a radome configured to allow electromagnetic waves to propagate; a multi-band software defined antenna array tile; a power and clock management subsystem configured to manage power and time of operation; a thermal management subsystem configured to dissipate heat generated by the multi-band software defined antenna array tile; and an enclosure assembly. The multi-band software defined antenna array tile may include a plurality of coupled dipole array antenna elements; a plurality of frequency converters; and a plurality of digital beamformers.
    Type: Grant
    Filed: March 3, 2023
    Date of Patent: January 9, 2024
    Assignee: BlueHalo, LLC
    Inventors: Michael Thomas Pace, David Gregory Baur, Theodore Lyman Schuler-Sandy, William Kennedy, Jeffrey Gerard Micono, William Louis Walker, Garrett James Newell
  • Patent number: 11870548
    Abstract: A mobile terminal having an integrated radio function according to an embodiment of the present disclosure includes an antenna configured to receive a digital radio signal, a radio connection module configured to support connection and communication with an analog radio, a display configured to play at least one of an audio signal, an image signal, and additional information, and a radio application configured to restore the audio signal, the image signal, and the additional information by decoding the digital radio signal and then play the audio signal, the image signal, and the additional information through the display, and transmit the audio signal to the analog radio when the analog radio is connected.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: January 9, 2024
    Assignee: ALGORKOREA CO. LTD
    Inventor: Dongsoo Jarng
  • Patent number: 11863267
    Abstract: The present invention relates to a multi-antenna channel estimation apparatus and method for performing beamforming in a communication system in which only single channel estimation is possible, and relates to a channel estimation apparatus and method for beamforming in which the transmitter generates pilot signals based on the Zadoff-Chu sequence and transmits the generated pilot signals to the receiver, the receiver estimates a channel based on the pilot signal, and feeds back information for beamforming to the transmitter based on the estimated channel information, and it is configured to enable beamforming by converting and setting the signal phase for each antenna according to the feedback received from the transmitter.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: January 2, 2024
    Inventors: Hyoung Kyu Song, Won Seok Lee, Ji Sung Jung
  • Patent number: 11862871
    Abstract: Systems and methods are provided for a digital beamformed phased array feed. The system may include a radome configured to allow electromagnetic waves to propagate; a multi-band software defined antenna array tile; a power and clock management subsystem configured to manage power and time of operation; a thermal management subsystem configured to dissipate heat generated by the multi-band software defined antenna array tile; and an enclosure assembly. The multi-band software defined antenna array tile may include a plurality of coupled dipole array antenna elements; a plurality of frequency converters; and a plurality of digital beamformers.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: January 2, 2024
    Assignee: BlueHalo, LLC
    Inventors: Michael Thomas Pace, David Gregory Baur, Theodore Lyman Schuler-Sandy, William Kennedy, Jeffrey Gerard Micono, William Louis Walker, Garrett James Newell
  • Patent number: 11863221
    Abstract: Described is a Neuromorphic Adaptive Core (NeurACore) cognitive signal processor (CSP) for wide instantaneous bandwidth denoising of noisy signals. The NeurACore CSP includes a NeurACore block, a globally learning layer, and a neural combiner. The NeurACore block is operable for receiving as an input a mixture of in-phase and quadrature (I/Q) signals and mapping the I/Q signals onto a neural network to determine complex-valued output weights of neural states of the neural network. The global learning layer is operable for adapting the complex-valued output weights to predict a most likely next value of the input I/Q signal. Further, the neural combiner is operable for combining a set of delayed neural state vectors with the weights of the global learning layer to compute an output signal, the output signal being separate in-phase and quadrature signals.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: January 2, 2024
    Assignee: HRL LABORATORIES, LLC
    Inventors: Sanaz Adl, Peter Petre, Gabriel L. Virbila, Austin F. Garrido, Bryan H. Fong, Adour V. Kabakian
  • Patent number: 11864140
    Abstract: A system and method are provided for enhanced multi-way time transfer for time synchronization between at least one slave node and one master node. A slave node sends a first message to the master node to launch a time synchronization between the slave node and the master node. Upon receiving the first message, the master node adds a receiving time on a master clock to the first message to form a second message. The master node sends the second message back to the slave node and the slave node adds a receiving time on the slave clock to the second message to form an updated message. The slave node performs a time adjustment to the slave clock based on the updated message, thereby synchronizing time between the slave node and the master node.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: January 2, 2024
    Assignee: INTELLIGENT FUSION TECHNOLOGY, INC.
    Inventors: Dan Shen, Genshe Chen, Khanh Pham, Erik Blasch
  • Patent number: 11848709
    Abstract: The present disclosure provides methods and devices that use the RIS phase shifting ability to provide many degrees of freedom to enable data to be overlaid on transmitted signals. The data overlay is done while the RIS is still beamforming the signal towards the receiver(s). The phase shifting capabilities of the RIS elements can provide amplitude, phase, frequency, and polarization manipulations. These manipulations can help enhance the communication and provide the ability to overlay information. The present application also provides new configuration signaling among devices in a communication network utilizing the RIS and configuration for the RIS.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 19, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Mostafa Medra, Mohammadhadi Baligh, Ahmad Abu Al Haija
  • Patent number: 11843188
    Abstract: Systems and methods are provided for a digital beamformed phased array feed. The system may include a radome configured to allow electromagnetic waves to propagate; a multi-band software defined antenna array tile; a power and clock management subsystem configured to manage power and time of operation; a thermal management subsystem configured to dissipate heat generated by the multi-band software defined antenna array tile; and an enclosure assembly. The multi-band software defined antenna array tile may include a plurality of coupled dipole array antenna elements; a plurality of frequency converters; and a plurality of digital beamformers.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: December 12, 2023
    Assignee: BlueHalo, LLC
    Inventors: Michael Thomas Pace, David Gregory Baur, Theodore Lyman Schuler-Sandy, William Kennedy, Jeffrey Gerard Micono, William Louis Walker, Garrett James Newell