Patents Examined by Bernard E. Souw
  • Patent number: 9087404
    Abstract: Computed tomography (CT) reconstruction includes reconstructing an axially extended reconstructed image from a measured cone beam x-ray projection data set (Pm), optionally having an off-center geometry. The reconstructing is performed for an extended volume (eFOV) comprising a reconstructable volume (rFOV) of the measured cone beam x ray data set that is extended along the axial direction. The projection data set may be weighted in the volume domain. Iterative reconstruction may be used, including initializing a constant volume and performing one or more iterations employing a first iterative update followed by one or more iterations employing a second, different iterative update.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: July 21, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Eberhard S. Hansis, Dirk Schaefer, Michael Grass
  • Patent number: 9087671
    Abstract: An inductively coupled plasma source having multiple gases in the plasma chamber provides multiple ion species to a focusing column. A mass filter allows for selection of a specific ion species and rapid changing from one species to another.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: July 21, 2015
    Assignee: FEI COMPANY
    Inventors: Anthony Graupera, Charles Otis
  • Patent number: 9086343
    Abstract: Disclosed is a method for enabling flexibility of the exoskeletons or joints of aquatic organisms immersed in an ion liquid water solution to be maintained without destroying their original forms by reducing the difference in osmotic pressure between the inside and outside of the aquatic organisms, preventing dehydration of biological samples. First, the aquatic organism is put into a low-concentration ionic liquid to increase continuously the concentration of the ionic liquid, enabling the water content of the aquatic organism to be substituted by a high-concentration ionic liquid in their original forms. The use of the increasing method that gentle increase in temperature of the ionic liquid by means of natural seasoning reduces the osmotic pressure difference between the inside and outside of the aquatic organism, increasing the concentration of the ionic liquid inside of the aquatic organism.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: July 21, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masamichi Shiono, Masako Nishimura, Mami Konomi
  • Patent number: 9076949
    Abstract: A light emitting device package including a package body, at least one electrode pattern placed on the package body, at least one light emitting device electrically connected to the electrode pattern, a heat dissipation member disposed in the package body to thermally come into contact with the light emitting device, and an anti-fracture layer placed on the heat dissipation member, wherein a width of the heat dissipation member is different at different heights of the package body.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: July 7, 2015
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Byung Mok Kim, Bo Hee Kang, Ha Na Kim, Hiroshi Kodaira, Yuichiro Tanda, Satoshi Ozeki
  • Patent number: 9070543
    Abstract: An ion mobility separator or spectrometer is disclosed comprising an inner cylinder and an outer cylinder defining an annular volume through which ions are transmitted. Spiral electrodes a-f are arranged on a surface of the inner cylinder and/or on a surface of the outer cylinder. A first device is arranged and adapted to maintain a DC electric field and/or a pseudo-potential force which acts to urge ions from a first end of the ion mobility separator or spectrometer to a second end of the ion mobility separator or spectrometer. A second device is arranged and adapted to apply transient DC voltages to the one or more spiral electrodes in order to urge ions towards the first end of the ion mobility separator or spectrometer. The net effect is to extend the effective path length of the ion mobility separator.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: June 30, 2015
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, David J. Langridge, Jason Lee Wildgoose
  • Patent number: 9061143
    Abstract: A charged particle beam irradiation system includes: an irradiation unit configured to irradiate an irradiation target with a charged particle beam; a radiation resistance state measuring section configured to measure a radiation resistance state of the irradiation target; a region dividing section configured to divide the irradiation target into a plurality of radiation resistance regions based on a measurement result of the radiation resistance state measuring section; a radiation dose computing section configured to compute a planned value of a radiation dose of the charged particle beam for each of the plurality of radiation resistance regions divided by the region dividing section; and an irradiation planning section-configured to create an irradiation plan of the charged particle beam with respect to the irradiation target based on a computation result of the radiation dose computing section.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: June 23, 2015
    Assignees: SUMITOMO HEAVY INDUSTRIES, LTD., NATIONAL CANCER CENTER
    Inventors: Kenzo Sasai, Teiji Nishio
  • Patent number: 9064679
    Abstract: An ion spectrometer is provided, comprising: an ion source, arranged to generate ions continuously with a first range of mass to charge ratios; and an ion trap, arranged to receive ions from the ion source along an axis, and to eject ions with a second range of mass to charge ratios orthogonally to that axis, the second range of mass to charge ratios being narrower than the first range of mass to charge ratios. In some embodiments, ions generated by the ion source continuously flow into the ion trap. Additionally or alternatively, ion optics receive ions ejected from the ion trap and cool the ions without substantial fragmentation. An ion analyzer receives ions ejected from the ion trap or ion optics and separates the ions in accordance with at least one characteristic of the ions.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: June 23, 2015
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventor: Alexander Alekseevich Makarov
  • Patent number: 9053916
    Abstract: Described herein are methods and systems related to the use of the pre-existing ion injection pathway of a mass spectrometer to perform beam-type collision-activated dissociation, as well as other dissociation methods. The methods can be practiced using a wide range of mass spectrometer configurations and allows MSn experiments to be performed on very basic mass spectrometers, even those without secondary mass analyzers and/or collision cells. Following injection and selection of a particular ion type or population, that population can be fragmented via beam-type collision-activated dissociation (CAD), as well as other dissociation methods, using the pre-existing ion injection pathway or inlet of a mass spectrometer. For CAD applications, this is achieved by transmitting the ions back along the ion injection pathway with a high degree of kinetic energy. As the ions pass into the higher pressure regions located in or near the atmospheric pressure inlet, the ions are fragmented and then trapped.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: June 9, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Joshua J. Coon, Graeme C. McAlister
  • Patent number: 9046368
    Abstract: The invention relates to a measurement by means of atom interferometry, using a Raman source that is created by modulating a monochromatic laser source. By conveniently selecting positions in which interactions between atoms and a laser radiation, produced by the Raman source, are caused, it is possible to eliminate or at least reduce a measurement bias caused by supplementary components of the laser radiation. Such a measurement having eliminated or reduced bias can be used in an inertia sensor.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: June 2, 2015
    Assignee: ONERA (Office National D'Etudes et de Recherches Aerospatiales)
    Inventors: Yannick Bidel, Nassim Zahzam, Alexandre Bresson
  • Patent number: 9046472
    Abstract: A crystal analysis apparatus includes: a measurement data storage configured to store electron back-scattering pattern (EBSP) data measured at electron beam irradiation points on a plurality of cross-sections of a sample formed substantially in parallel at prescribed intervals; a crystal orientation database configured to accumulate therein information of crystal orientations corresponding to EBSPs; and a map constructing unit that constructs a three-dimensional crystal orientation map based on distribution of crystal orientations in normal directions of a plurality of faces of a polyhedral image having the cross-sections arranged at the prescribed intervals by reading out the crystal orientations in the normal directions of the faces from the crystal orientation database on the basis of the EBSP data stored in the measurement data storage.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: June 2, 2015
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Xin Man, Toshiaki Fujii
  • Patent number: 9042512
    Abstract: An approach is disclosed for acquiring multi-sector computed tomography scan data. The approach includes activating an X-ray source during heartbeats of a patient to acquire projection data over a limited angular range for each heartbeat. The projection data acquired over the different is combined. An image having good temporal resolution is reconstructed using the combined projection data.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: May 26, 2015
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Zhye Yin, Bruno Kristiaan Bernard De Man, Jed Douglas Pack, Kyle Morgan Champley, Kai Zeng
  • Patent number: 9040911
    Abstract: Conventionally, in a general-purpose scanning electron microscope, the maximum accelerating voltage which can be set is low, and hence thin crystal samples which can be observed under normal high-resolution observation conditions are limited to samples with large lattice spacing. For this reason, there has no means for accurately performing magnification calibration. As means for solving this problem, the present invention includes an electron source which generates an electron beam, a deflector which deflects the electron beam so as to scan a sample with the electron beam, an objective lens which focuses the electron beam on the sample, a detector which detects an elastically scattered electron and an inelastically scattered electron which are transmitted through the sample, and an aperture disposed between the sample and the detector to control detection angles of the elastically scattered electron and the inelastically scattered electron.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: May 26, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takeshi Ogashiwa, Mitsugu Sato, Mitsuru Konno
  • Patent number: 9040937
    Abstract: In a pattern inspection of a semiconductor circuit, to specify a cause of a process defect, not only a distribution on and across wafer of the number of defects but also more detailed, that is, the fact that how many defects occurred where on the semiconductor pattern is needed to be specified in some cases. Accordingly, the present invention aims to provide an apparatus capable of easily specifying a cause of a process defect based upon a positional relationship of a distribution of defect occurrence frequency and a pattern.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: May 26, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kohei Yamaguchi, Takehiro Hirai, Ryo Nakagaki
  • Patent number: 9029816
    Abstract: A source assembly (48) configured to generate infrared electromagnetic radiation includes an emitter (60) that emits electromagnetic radiation over an emission solid angle. A portion of the emitted electromagnetic radiation is used in a detection. The portion of the user electromagnetic radiation surrounds the optical path in a usable solid angle. Electromagnetic radiation outside of the usable solid angle is focused back by a reflection assembly (64) onto the emitter to enhance the efficiency of the emitter.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Koninklijkle Philips N.V.
    Inventor: James Torrance Russell
  • Patent number: 9029765
    Abstract: Ion sources, systems and methods are disclosed. In some embodiments, the ion sources, systems and methods can exhibit relatively little undesired vibration and/or can sufficiently dampen undesired vibration. This can enhance performance (e.g., increase reliability, stability and the like). In certain embodiments, the ion sources, systems and methods can enhance the ability to make tips having desired physical attributes (e.g., the number of atoms on the apex of the tip). This can enhance performance (e.g., increase reliability, stability and the like).
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: May 12, 2015
    Assignee: Carl Zeiss Microscopy, LLC
    Inventors: Richard Comunale, Alexander Groholski, John A. Notte, IV, Randall G. Percival, Billy W. Ward
  • Patent number: 9031204
    Abstract: A leaf module for a multi-leaf collimator comprises a leaf unit and a leaf drive unit. The leaf unit comprises a leaf for shielding beams from a selected area. The leaf unit is mounted displaceably in an adjusting direction with relation to the leaf drive unit. The leaf drive unit is designed to displace the leaf unit linearly in the adjusting direction. The leaf drive unit comprises at least one drive mechanism which operates based on piezoelectric actuation, being designed such that the leaf drive unit thoroughly encloses the leaf unit within a plane being oriented substantially perpendicularly related to the adjusting direction. The multi-leaf collimator can comprise a plurality of leaf modules while being shaped as compact as possible. Both precise and stable adjustability of the leaf unit is achieved with the leaf module.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 12, 2015
    Assignee: Deutsches Krebsforschungszentrum
    Inventors: Gernot Echner, Steffen Seeber, Klaus Schewiola
  • Patent number: 9025730
    Abstract: Systems and methods for braking and releasing one or more pivot joints used in an X-ray positioning device are described. The systems and methods use a support arm that extends between a main assembly of the x-ray positioning device and an X-ray imaging assembly with an X-ray source and an X-ray detector that are disposed nearly opposite to each other. The support arm includes one or more pivot joints (such as horizontal, lateral, and/or orbital pivot joints) that allow the imaging assembly to move with respect to the main assembly. The pivot joints can each be connected to an automated braking system that is capable of selectively locking and unlocking a corresponding pivot joint, as indicated by a user-controlled switching mechanism. The braking systems containing multiple pivot joints can be individually controlled by separate switching mechanisms or simultaneously controlled by a single switching mechanism. Other embodiments are described.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: May 5, 2015
    Assignee: General Electric Company
    Inventors: David Ellis Barker, John Matthew Simmons
  • Patent number: 9024272
    Abstract: A pattern measuring apparatus which can identify a kind of gaps formed by a manufacturing process having a plurality of exposing steps such as SADP, particularly, which can suitably access a gap even if a sample has the gap that is not easily accessed is disclosed. A feature amount regarding one end side of a pattern having a plurality of patterns arranged therein and a plurality of kinds of feature amounts regarding the other end side of the pattern are extracted from a signal detected on the basis of scanning of a charged particle beam. With respect to proper kinds of feature amounts among the plurality of kinds of feature amounts, the feature amount on one side of the pattern and that on the other end side of the pattern are compared. On the basis of the comparison, the kinds of spaces among the patterns are determined.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 5, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kei Sakai, Yafeng Zhang, Norio Hasegawa
  • Patent number: 9024256
    Abstract: An electron microscope is provided. In another aspect, an electron microscope employs a radio frequency which acts upon electrons used to assist in imaging a specimen. Furthermore, another aspect provides an electron beam microscope with a time resolution of less than 1 picosecond with more than 105 electrons in a single shot or image group. Yet another aspect employs a super-cooled component in an electron microscope.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: May 5, 2015
    Assignee: Board of Trustees of Michigan State University
    Inventors: Chong-Yu Ruan, Martin Berz, Zhensheng Tao
  • Patent number: 9020094
    Abstract: A method for assisted positioning of an organ is provided. An acquisition system comprises a platform underneath which a detector is placed for the acquisition of radiographic medical images, during which a radiation source is moved over different successive positions with respect to the detector, wherein at least one medical image is acquired at each position of the radiation source. The method comprises illuminating the platform with a light source of the acquisition system to assist the positioning of the organ on the platform; and determining, with a drive unit of the acquisition system, a positioning limit on the platform based on the distance separating the platform and a compression paddle used to compress the organ and based on the position of the light source relative to the detector, wherein the positioning limit on the platform is a limit beyond which the organ must not lie.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 28, 2015
    Assignee: General Electric Company
    Inventors: Yana Popova, Henri Souchay