Patents Examined by Bill Thomson
  • Patent number: 11559279
    Abstract: Aspects of the technology described herein relate to guiding collection of ultrasound data collection using motion and/or orientation data. A first instruction for rotating or tilting the ultrasound imaging device to a default orientation may be provided. Based on determining that the ultrasound imaging device is in the default orientation, a second instruction for translating the ultrasound imaging device to a target position may be provided. Based on determining that the ultrasound imaging device is in the target position, a third instruction for rotating or tilting the ultrasound imaging device to a target orientation may be provided.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: January 24, 2023
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Nathan Silberman, Tomer Gafner, Igor Lovchinsky, Ardavan Saeedi
  • Patent number: 11547387
    Abstract: An ultrasound probe in combination with at least an operating unit such as a tracking sensor or receiver and/or a keypad and/or a surgical tool support, wherein the probe and the at least one operating unit are each one provided with one of two parts of a releasable joint, the said two parts of the joint being releasably engageable one with the other by magnetic force and by mechanical coupling.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: January 10, 2023
    Assignee: Esaote S.p.A.
    Inventors: Leonardo Forzoni, Stefano De Beni, Fabrizio Spezia
  • Patent number: 11523742
    Abstract: Systems, methods, and apparatus for identifying a health disorder based on a temperature asymmetry estimation. A system may include a thermal camera configured to detect thermal images of an inspected body part and a reference body part, which may be contralateral to the inspected body part. The system may further include an optical camera configured to detect optical images of the inspected body part and the reference body part. The system may further include a remote mobile device having a mobile processor programmed to control the thermal camera to detect the thermal images and the optical camera to detect the optical images. The system may further include remote server having a diagnostic processor programmed to determine that a functional disorder or inflammation of the inspected body part has occurred by analyzing the thermal images and the optical images.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: December 13, 2022
    Assignee: UAB Dlabetis
    Inventors: Gintare Marine, Urte Steikuniene, Jonas Guzaitis, Rytis Zajanckauskas
  • Patent number: 11497560
    Abstract: A method, system, and device for selective power saving may be used in medical procedures. The device may be configured to receive motion information from a detector and location information from a sensor. A processor may correlate the motion information and the location information to determine whether to maintain power to the sensor. The determination of whether to maintain power to the sensor may be based on the correlation of the motion information and the location information. The processor may determine whether the location of the device has changed and the degree of that change. The processor may also determine whether the motion information is less than a duration threshold. The duration threshold may be a user configurable threshold. The processor may power off the sensor if a duration threshold is met and/or the location of the wireless tool has not changed.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: November 15, 2022
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Vadim Gliner, Yaron Ephrath, Assaf Govari, Andres Claudio Altmann
  • Patent number: 11484291
    Abstract: Systems, methods, and apparatuses for coupling a flexible circuit to a printed circuit board (PCB) with an interposer in an ultrasound probe are disclosed. A bolster plate configured to compress the PCB, interposer, and flexible circuit against a transducer mount is disclosed. A method of coupling a bolster plate to a transducer mount with fasteners is disclosed. Fasteners that do not pass through the PCB, interposer, and flexible circuit are disclosed.
    Type: Grant
    Filed: January 2, 2016
    Date of Patent: November 1, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Dino Francesco Cuscuna
  • Patent number: 11478197
    Abstract: A medical imaging apparatus, and a sensor arrangement for acquiring at least one item of patient movement information during a medical imaging examination, have at least one sensor element and a support apparatus, with the at least one sensor element arranged on the support apparatus. The support apparatus has a positioning element for positioning the support apparatus and at least one strut-like support element on which the at least one sensor element is removably arranged.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 25, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Thomas Beck, Daniel Nico Splitthoff, Steffen Schroeter
  • Patent number: 11457889
    Abstract: A system and a method of non-invasive continuous echocardiographic monitoring is provided with an ultrasound transducer and a bedside monitor. The beside monitor includes a monitor central processing unit (CPU). First, the ultrasound transducer is attached onto a specific skin portion of a patient. The specific skin portion is positioned adjacent to a patient's heart. Next, continuous echocardiographic data is sensed with the ultrasound transducer. After relaying the continuous echocardiographic data from the ultrasound transducer to the monitor CPU, the monitor CPU generates a real-time ultrasound image of the heart from the continuous echocardiographic data. Finally, the real-time ultrasound image is outputted with the bedside monitor. If the bedside monitor has a main screen, then the real-time ultrasound image is displayed through a picture-in-picture format with the main screen.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: October 4, 2022
    Inventor: Lazaro Eduardo Hernandez
  • Patent number: 11439428
    Abstract: A positioning fixture for use with an ultrasound transducer comprising a base having a planar bottom surface and top surface, each having two long edges and two short edges, the top surface facing away from the bottom surface; first and second echogenic targeting bands recessed below the bottom surface of the housing; a pair of long sidewalls provided on and extending orthogonally from the top surface, one long sidewall of the pair of long sidewalls attached to each of the two long edges; a guide release on the top surface, attached to one of the two short edges on the top surface; a long axis needle guide on the top surface, attached to another of the two short edges; and a receptacle cooperatively defined by the pair of long sidewalls, the guide release and the long axis needle guide, the receptacle sized to accommodate the ultrasound transducer.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: September 13, 2022
    Inventor: Samuel S. Shields
  • Patent number: 11413005
    Abstract: The disclosed devices, systems and methods measure non-invasive blood pressure in a patient. Energy emissions, such as ultrasound or light, are emitted into tissues of the patient. The emitted energy reflects from various tissues, such as flowing blood and vessels, and can be detected, or received, to generate a reflected energy signal or data. The reflected energy can be processed, such as by using a constitutive equation, to calculate the blood pressure.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: August 16, 2022
    Assignee: Stryker Corporation
    Inventor: Clinton T. Siedenburg
  • Patent number: 11412945
    Abstract: The present invention addresses the problem of providing a muscle activity measurement device and a muscle activity measurement method which make it possible to measure the muscle activity of an object to be sensed with increased accuracy. The muscle activity measurement device is provided with a magnetic sensor unit which senses a magnetic field generated from a living body. The muscle activity measurement device identifies an installed direction of the muscle activity measurement device, and includes an indication, on a surface of a container, which comprises identification information for installing the muscle activity measurement device in such a way that a magnetism sensing direction X of the magnetic sensor unit and the direction in which the muscle fibers of the living body as the object to be sensed extend are substantially orthogonal to each other.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: August 16, 2022
    Assignees: National University Corporation Tokyo Medical and Dental University, TDK CORPORATION
    Inventors: Shigenori Kawabata, Shuichi Okawa, Shuta Ushio
  • Patent number: 11406349
    Abstract: The embodiments herein provide a system for calibration-free cuff-less evaluation of blood pressure. The system includes an ultrasound-based arterial compliance probes and a controller unit connected to the said probe. The ultrasound transducers are configured to measure the change in arterial dimensions, pulse wave velocity, and other character traits of an arterial segment over continuous cardiac cycle, which is then used to evaluate blood pressure parameters without any calibration procedure using dedicated mathematical models.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: August 9, 2022
    Assignee: HEALTHCARE TECHNOLOGY INNOVATION CENTRE
    Inventors: Nabeel Pilaparambil Mashood, Jayaraj Joseph, Mohanasankar Sivaprakasam, Vangapandu Raj Kiran
  • Patent number: 11357477
    Abstract: By identifying locations of contrast agent response, an intensity-based metric of contrast agent signal is used to control a duration of microbubble destruction with a medical ultrasound scanner. Feedback from motion of the transducer may be used to indicate when a user perceives enough destruction. A combination of both an intensity-based metric and transducer motion may be used to control the duration of bursting.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: June 14, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: David P. Duncan, Gilles D. Guenette, Ismayil M. Guracar
  • Patent number: 11324556
    Abstract: In one embodiment, a medical probe tracking system includes a first probe, a magnetic field generator to generate a magnetic field, and processing circuitry to measure first electrical currents between body surface electrodes and first probe electrodes, receive magnetic position signals from a magnetic field sensor of a second probe, compute first position coordinates of the first probe in a first coordinate frame responsively to distribution of the first electrical currents, render an initial 3D representation of the first probe in the first coordinate frame and then compute a current-position map with respect to a second coordinate frame defined by the magnetic field generator, find a transformation between the first and second coordinate frames, apply the transformation to the first position coordinates yielding second position coordinates, and render a modified 3D representation of the first probe according to the second position coordinates in the second coordinate frame.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: May 10, 2022
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Aharon Turgeman, Avigdor Rosenberg, Uri Yaron
  • Patent number: 11298105
    Abstract: A tissue positioning system for contouring a patient tissue volume includes an axially displaceable interface having a surface configured to engage a breast or other tissue volume. A low pressure source applies a partial low pressure to the surface of the displaceable interface to secure the tissue volume to the surface, and the axially displaceable interface is biased to pull and contour the tissue volume when the tissue volume is secured to the surface. The axially displaceable interface is typically mounted on a telescoping support and the biasing is provided by the same low pressure used to secure the tissue volume.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: April 12, 2022
    Assignee: Delphinus Medical Technologies, Inc.
    Inventors: Ron Ho, Peter Littrup, Nebojsa Duric
  • Patent number: 11278370
    Abstract: A method of operating a marking device includes defining an initial condition wherein a cannula is in an extended position and a stylet is in a ready position in the extended cannula, and, starting from the initial condition with the cannula in the extended position, sequentially: effecting movement of the stylet from a ready position to an implant position, ejecting an imaging marker through a distal opening in a cannula distal end of the cannula, and then; effecting a simultaneous unitary retraction of the cannula and stylet after ejection of the imaging marker from the distal opening in the cannula distal end.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: March 22, 2022
    Assignee: BARD PERIPHERAL VASCULAR, INC.
    Inventors: Steven E. Field, Ryan L. Goosen, Richard E. Davis, Richard M. Chesbrough
  • Patent number: 11272902
    Abstract: An ultrasound probe arrangement comprises a holder for application to a surface, a housing mounted over the holder and a probe carrier. The housing has an inner guide surface which comprises a portion of a sphere and the probe carrier comprises a disc having an outer guide surface around the outer rim of the disc which comprises a portion of sphere. The probe carrier is slidable within the housing with the inner and outer guide surfaces in contact. An ultrasound probe is carried by the probe carrier and makes contact with the surface, e.g. skin. This arrangement enables the probe to be held in a desired orientation so that a clinician can work hands-free. The disc design enables different probe designs to be used with the same basic holder and housing design.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: March 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul Jean Geelen, Mart Kornelis-Jan Te Velde, Franciscus Hendrikus van Heesch
  • Patent number: 11272831
    Abstract: A photoacoustic-ultrasonic dual-mode endoscope includes: a probe and a probe driving unit, wherein the probe includes: a coaxially configured optical and electromagnetic rotary waveguide assembly including an optical fiber, the optical fiber including a core and a cladding, and a conductive path coaxially arranged with the optical fiber; a scanning tip located at an end of the coaxially configured optical and electromagnetic rotary waveguide assembly and configured to deliver a laser beam to an object to be examined and detect a photoacoustic signal and an ultrasonic signal generated from the object to be examined; and a plastic catheter surrounding outer surfaces of the coaxially configured optical and electromagnetic rotary waveguide assembly and the scanning tip, wherein the conductive path includes: a first conductive path including a portion coaxially arranged with the optical fiber; and a second conductive path including a portion coaxially arranged with the optical fiber and insulated from the first co
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: March 15, 2022
    Assignee: UNIST(ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY)
    Inventors: Joon-Mo Yang, Chae Un Kim
  • Patent number: 11259777
    Abstract: According to one embodiment, an ultrasound diagnosis apparatus includes a storage and a control unit. The storage stores transmission/reception conditions for a first ultrasound probe among a plurality of ultrasound probes. Upon receipt of a second switching instruction to switch a second ultrasound probe to the first ultrasound probe after a first switching instruction to switch the first ultrasound probe to the second ultrasound probe, the control unit applies the transmission/reception conditions stored in the storage to the first ultrasound probe when the time between the first switching instruction and the second switching instruction is less than a predetermined time.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: March 1, 2022
    Assignee: Canon Medical Systems Corporation
    Inventors: Koichi Morikawa, Hironobu Hongou, Gen Nagano, Kenichi Unayama, Satoshi Kamiyama
  • Patent number: 11241162
    Abstract: A method of operating a magnetic resonance imaging system (10) with regard to acquiring multiple-phase dynamic contrast-enhanced magnetic resonance images, the method comprising steps of acquiring (48) a first set of magnetic resonance image data (xpre) prior to administering a contrast agent to the subject of interest (20), by employing a water/fat magnetic resonance signal separation technique, determining (52) a first image of the spatial distribution of fat (Ipre) of at least the portion of the subject of interest (20), acquiring (50) at least a second set of magnetic resonance image data (x2) of at least the portion of the subject of interest (20) after administering the contrast agent to the subject of interest (20), by employing a water/fat magnetic resonance signal separation technique, determining (54) at least a second image of the spatial distribution of fat (I2ph) of at least the portion of the subject of interest (20), applying (56) an image registration method to the second image of the spatial
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: February 8, 2022
    Assignees: Koninklijke Philips N.V., Board of Regents of the University of Texas Systems
    Inventors: Nadine Gdaniec, Peter Boernert, Mariya Ivanova Doneva, Ivan Pedrosa
  • Patent number: 11241217
    Abstract: An ultrasound probe includes: a casing; a plurality of piezoelectric devices that are arranged inside the casing; an acoustic matching layer that is attached to ultrasound radiation surfaces of the piezoelectric devices; a shared ground that is arranged on a surface of the acoustic matching layer to allow at least a part of the shared ground to come in contact with the piezoelectric devices; a deformation preventing member that is arranged in contact with the surface of the acoustic matching layer to surround an outer periphery of the piezoelectric devices and to be separated from the piezoelectric devices; a coaxial line configured to transmit a signal to each of the piezoelectric devices; and a circuit board that is arranged on an opposite side to the ultrasound radiation surfaces of the piezoelectric devices, the circuit board being configured to electrically connect the piezoelectric devices and the coaxial line.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: February 8, 2022
    Assignee: OLYMPUS CORPORATION
    Inventor: Sunao Sato