Patents Examined by Blake C Riddick
  • Patent number: 11964172
    Abstract: A quality assurance device for a medical accelerator includes a housing having an inner radioluminescent layer adapted to provide a visual indication when contacted with invisible radiation generated by the medical accelerator. In addition, the quality assurance device includes one or more cameras located within the housing and adapted to image the inner radioluminescent layer of the housing including the visual indication.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 23, 2024
    Assignee: University of Kentucky Research Foundation
    Inventors: Janelle A. Molloy, Dennis A. Cheek, Quan Chen
  • Patent number: 11963813
    Abstract: A PET imaging system, with parallel detector rings sharing a common axis (e.g., rings with one or more detector elements in the axial direction and two or more detector elements in the transaxial direction), may have an adaptive axial and/or transaxial FOV by employing a sparse detector configuration and adapting the size of axial gaps between rings and/or the size of transaxial gaps between detector elements in each ring. The axial FOV may be dynamic, enabling PET data acquisition in multiple modes (e.g., “retracted” with detector rings in a compact configuration, and “extended” with detector rings extended for longer axial FOV). The transaxial FOV may be dynamic, enabling an adaptive detector ring diameter for different body part contours. The sparse detector ring configurations may be used to extend the scanner axial and/or transaxial FOV, or retain the current system's FOV with half the number of (or otherwise fewer) detector elements.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 23, 2024
    Assignee: CORNELL UNIVERSITY
    Inventors: Sadek Nehmeh, Nikolaos A. Karakatsanis
  • Patent number: 11953632
    Abstract: The invention relates to an X-ray detector component comprising an X-ray detector chip made from a silicon substrate and comprising charge collecting electrodes. The X-ray detector chip is suitable for providing an X-ray-dependent current at the charge collecting electrodes. The X-ray detector component further comprises a CMOS read-out circuit chip comprising connection electrodes. The X-ray detector chip and the CMOS read-out circuit chip are mechanically and electrically connected in such a manner that the charge collecting electrodes and the connection electrodes are electrically connected. The invention further relates to an X-ray detection module, an imaging device and a method for manufacturing an X-ray detector component.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 9, 2024
    Assignee: AMS INTERNATIONAL AG
    Inventor: Jens Hofrichter
  • Patent number: 11953452
    Abstract: An ionizing radiation detector, such as a photon counting computed tomography detector, includes a semiconductor material plate, a plurality of anodes located on a first side of the semiconductor material plate, where the gaps (i.e., streets) between adjacent anodes are less than 15 ?m in width, and at least one cathode located on a second side of the semiconductor material plate. Ionizing radiation detectors according to various embodiments may have improved count rate stability (CRS) characteristics and a reduced number of Non-Conforming Pixels (NCPs) relative to conventional detectors.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: April 9, 2024
    Assignee: REDLEN TECHNOLOGIES, INC.
    Inventors: Pramodha Marthandam, Michael Kevin Jackson
  • Patent number: 11944483
    Abstract: Disclosed herein is a method comprising: determining doses of radiation received by a first set of pixels of a radiation detector; determining that the doses satisfy a criterion; adjusting exposure of the radiation detector to the radiation in response to the doses satisfying the criterion; and forming an image based on radiation received by a second set of pixels of the radiation detector.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: April 2, 2024
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 11940591
    Abstract: A system including a logging tool that can detect gamma rays in a wellbore, where the logging tool can have a window formed in an outer surface of a drill collar that allows increased sensitivity of a gamma ray detector assembly housed within the drill collar, with a body of the drill collar radially surrounding the gamma ray detector assembly, where the window can be filled with a material, and where the windows provide increased sensitivity to gamma rays in a wellbore in an azimuthal direction allowing azimuthal mapping of the gamma rays in formation surrounding the wellbore.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: March 26, 2024
    Assignee: Nabors Drilling Technologies USA, Inc.
    Inventors: Sergei Knizhnik, Marian L. Morys
  • Patent number: 11940374
    Abstract: A continuously tunable radio frequency (RF) sensor system is provided. The system includes a pump laser system that includes first and second pump lasers, at least one frequency modulator to modulate frequencies of first and second laser light from the pump lasers to first and second select frequencies, a switch system to selectively pass one of the first and second laser light, an amplifier to amplify the passed laser light, a frequency doubler to double the frequency of the amplified laser light to generate pump light. A laser source lock system is in communication with the pump laser system to ensure a frequency of the pump light is referenced to atoms in a vapor cell and provide a probe light. The pump light and probe light are transmitted through the vapor cell. A detector measures the probe light that passed through the vapor cell.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: March 26, 2024
    Assignee: Honeywell International Inc.
    Inventors: Karl D. Nelson, Matthew Wade Puckett, Neal Eldrich Solmeyer, Robert Compton
  • Patent number: 11933935
    Abstract: A method may include obtaining, using a gamma-ray detector, first acquired gamma-ray data regarding a first core sample. The first acquired gamma-ray data may correspond to various sensor steps. The method may further include determining a sensitivity map based on the first acquired gamma-ray data. The method may further include obtaining, using the gamma-ray detector, second acquired gamma-ray data regarding a second core sample at the sensor steps. The method further includes generating a gamma-ray log using the sensitivity map and a gamma-ray inversion process.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: March 19, 2024
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Jin-Hong Chen, Stacey M. Althaus, Houzhu Zhang
  • Patent number: 11916094
    Abstract: A photoelectric conversion panel includes: a thin film transistor; a first organic film formed in an upper layer with respect to the thin film transistor; a photoelectric conversion element formed in an upper layer with respect to the first organic film; and a first inorganic insulating film formed so as to cover at least a part of the first organic film, wherein the first inorganic insulating film has a through hole that exposes a part of the first organic film.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: February 27, 2024
    Assignee: Sharp Display Technology Corporation
    Inventors: Hiroyuki Moriwaki, Makoto Nakazawa, Tetsuya Tanishima, Rikiya Takita
  • Patent number: 11903750
    Abstract: For calibration in medical emission tomography, the dosimeter and/or detector is calibrated in the field, such as at the clinic or other patient scanning location. To allow for a fewer number of calibration sources used in calibrating and/or assist in calibration for multispectral emission tomography, a calibration source includes multiple isotopes and/or a proxy source or isotope is used instead of the same isotope used in factory calibration.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: February 20, 2024
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Miesher Rodrigues
  • Patent number: 11895397
    Abstract: Pulsed fluorescence imaging without input clock or data transmission clock is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a plurality of bidirectional data pads and a controller in communication with the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of: electromagnetic radiation having a wavelength from about 795 nm to about 815 nm.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: February 6, 2024
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11892403
    Abstract: Pulsed fluorescence imaging without input clock or data transmission clock is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a plurality of bidirectional data pads and a controller in communication with the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of: electromagnetic radiation having a wavelength from about 770 nm to about 790 nm; or electromagnetic radiation having a wavelength from about 795 nm to about 815 nm.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: February 6, 2024
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11892575
    Abstract: A radiation imaging system includes a data processing apparatus and a radiation imaging apparatus. The radiation imaging apparatus includes a plurality of antennas for transmitting and receiving data to and from the data processing apparatus via wireless communication. The data processing apparatus transmits, to the radiation imaging apparatus, information about an antenna that is preset as an antenna to be used from among the plurality of antennas. The radiation imaging apparatus selects, based on the information, the antenna to be used from the plurality of antennas.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: February 6, 2024
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shigeo Kobayashi
  • Patent number: 11883216
    Abstract: A method is for generating an X-ray image dataset via an X-ray detector having a converter element and a multiplicity of pixel elements. In an embodiment, the method includes first counting of at least one quantity of count signals dependent upon the incident X-ray radiation in each pixel element of the multiplicity of pixel elements; second counting of at least one quantity of coincidence count signals in each pixel element of the subset of pixel elements with at least one further pixel element of the multiplicity of pixel elements; and generating an X-ray image dataset based upon the at least one quantity of count signals counted in each pixel element of the multiplicity of pixel elements and upon the at least one quantity of coincidence count signals counted in each pixel element of the subset of pixel elements.
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: January 30, 2024
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Edgar Goederer, Martin Hupfer, Bjoern Kreisler, Martin Petersilka
  • Patent number: 11883214
    Abstract: Improved imaging devices and methods. A portable SPECT imaging device may co-register with imaging modalities such as ultrasound. Gamma camera panels including gamma camera sensors may be connected to a mechanical arm. A coded aperture mask may be placed in front of a gamma-ray photon sensor and used to construct a high-resolution three-dimensional map of radioisotope distributions inside a patient, which can be generated by scanning the patient from a reduced range of directions around the patient and with radiation sensors placed in close proximity to this patient. Increased imaging sensitivity and resolution is provided. The SPECT imaging device can be used to guide medical interventions, such as biopsies and ablation therapies, and can also be used to guide surgeries.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: January 30, 2024
    Assignee: Ziteo, Inc.
    Inventors: Michael Quinlan, Lucian Mihailescu, Andrei Claudiu Cosma
  • Patent number: 11860321
    Abstract: A radiation latency measurement system, having a pulse detector connected to a radiation detector mounted within a phantom that is configured to be positioned within a radiation treatment system which delivers a radiation dose to the radiation detector. The pulse detector has a first circuit that applies a high voltage bias to the radiation detector and a second circuit that amplifies the voltage signal from the radiation detector with a fixed gain first amplification stage and a variable gain second amplification stage. A first comparator receives the amplified signal and generates an output signal when the amplified signal exceeds a specified voltage level and a second comparator that processes and filters the output signal. The timing of receipt of the radiation dose signal may be compared to the position of the radiation detector in order to measure a radiation dose latency of the radiation treatment system.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: January 2, 2024
    Assignee: MODUS MEDICAL DEVICES INC.
    Inventors: David John Munro Miller, Nicholas Gerard Hartman, Enzo Antonio Barberi
  • Patent number: 11860319
    Abstract: A phase-contrast imaging detector includes a plurality of pixels. Each pixel includes a detection material that generates a measurable parameter in response to X-ray photons. Each pixel also includes a plurality of sub-pixel resolution readout structures. The sub-pixel resolution readout structures are in an alternating pattern with a spacing therebetween that is larger than a frequency of a phase-contrast interference pattern but small enough to enable charge sharing between adjacent sub-pixel resolution readout structures when an X-ray photon hits between the adjacent sub-pixel resolution readout structures. The phase-contrast imaging detector also includes readout circuitry configured to read out signals from the plurality of sub-pixel readout structures. The plurality of sub-pixel resolution readout structures includes two or more electrodes having alternating arms that form an interleaved comb structure.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: January 2, 2024
    Assignee: GE Precision Healthcare LLC
    Inventors: Uwe Wiedmann, Biju Jacob, Brian David Yanoff
  • Patent number: 11857355
    Abstract: A system and method for detection of x-rays is provided. An x-ray detector system may include an energy-integrating x-ray detector having an array of x-ray sensing elements that are configured to sense x-rays emitted from an x-ray source and generate energy-integrating x-ray data. The system may also include a photon-counting detector having another array of x-ray sensing elements configured to determine an interaction between individual x-ray photons with individual sensing elements of the another array of x-ray sensing elements to generate photon-counting x-ray data. The system may further include electronics configured to receive the energy-integrating x-ray data and the photon-counting x-ray data simultaneously.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: January 2, 2024
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventor: Ke Li
  • Patent number: 11846739
    Abstract: A circuit for sensing an X-ray including a switching element, a storage element, a sensing element and a branching element. The storage element electrically coupled to the switching element. The sensing element electrically coupled to the switching element. The branching element electrically coupled between the storage element and the sensing element.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: December 19, 2023
    Assignee: InnoCare Optoelectronics Corporation
    Inventors: Hsin-Hung Lin, Chin-Chi Chen, Chih-Hao Wu
  • Patent number: 11843022
    Abstract: An X-ray imaging panel includes: a photodiode that converts scintillation light that is obtained from an X-ray that passes through an object into a signal; a first thin-film transistor; a first insulating film that covers at least a part of the first thin-film transistor and that has a first opening above the first thin-film transistor; a lower electrode that is disposed below the photodiode, that covers at least a part of the first insulating film, that is formed in the first opening of the first insulating film, and that is connected to the first thin-film transistor in the first opening; and a second insulating film that is disposed above the lower electrode and that is formed in the first opening. The photodiode covers the first opening in which the second insulating film is formed, and the photodiode is connected to the lower electrode.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: December 12, 2023
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Rikiya Takita, Akinori Kubota, Hiroyuki Moriwaki, Makoto Nakazawa