Patents Examined by Brad Duffy
  • Patent number: 11566075
    Abstract: The present invention relates to an isolated antibody, which selectively binds to CLEC14A, wherein said antibody (a) comprises at least one heavy chain variable region that comprises three CDRs and at least one light chain variable region that comprises three CDRs, wherein said heavy chain variable region comprises: (i) a variable heavy (VH) CDR1 that has the amino acid sequence of SEQ ID NO. 105, preferably of SEQ ID NO: 2 or 42; (ii) a VH CDR2 that has the amino acid sequence of SEQ ID NO. 106, preferably of SEQ ID NO: 3 or 43; and/or (iii) a VH CDR3 that has the amino acid sequence of SEQ ID NO. 107, preferably of SEQ ID NO: 4 or 44; and/or wherein said light chain variable region comprises: (iv) a variable light (VL) CDR1 that has the amino acid sequence of SEQ ID NO. 108, preferably of SEQ ID NO: 6 or 46; (v) a VL CDR2 that has the amino acid sequence of SEQ ID NO. 109, preferably of SEQ ID NO: 7 or 47; and/or (vi) a VL CDR3 that has the amino acid sequence of SEQ ID NO.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: January 31, 2023
    Inventors: Roy Bicknell, Steven Lee
  • Patent number: 11547748
    Abstract: The present invention generally relates to T-cells, such as CD8+ T-cells, CD4+ T-cells, CD3+ T-cells, ?? T-cells or natural killer (NK) T-cells, transfected/transduced with a fusion protein which is recruited by the use of trivalent, bispecific antibody molecule which specifically binds to/interacts with the extracellular domain of the fusion protein. More precisely, the present invention relates to a kit comprising the nucleic acid molecules, vectors and/or the fusion proteins of the present invention and the trivalent, bispecific antibody molecules of the present invention. Further aspects of the inventions are expression vectors comprising nucleic acid molecules encoding the fusion proteins as well as the trivalent, bispecific antibody molecules. Further, a process for the production of the trivalent, bispecific antibody molecules of the invention and a medicament/pharmaceutical composition comprising said trivalent, bispecific antibody molecules are described.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: January 10, 2023
    Inventors: Christian Klein, Claudio Sustmann, Gerhard Niederfellner, Martina Geiger, Stefan Endres, Sebastian Kobold
  • Patent number: 11548915
    Abstract: The present invention relates to methods of overcoming the resistance to an EGFR (Epidermal Growth Factor Receptor)-targeting antibody through a peptide that binds specifically to neuropilin-1 (NRP1). Moreover, the present invention relates to a fusion antibody in which a peptide that binds specifically to NRP1 is fused to an EGFR-targeting antibody, and to a composition of overcoming the resistance to an EGFR-targeting antibody alone by co-administration of the EGFR-targeting antibody and an NRP1-binding peptide-fused Fc. In addition, the fusion antibody according to the present invention, in which the NRP1-specific binding peptide is fused to an EGFR-targeting antibody, overcomes the resistance to the EGFR-targeting antibody alone in pancreatic cancer. Furthermore, the fusion antibody, in which the NRP1-specific binding peptide is fused to the EGFR-targeting antibody, also overcomes resistance to the EGFR-targeting antibody alone even in lung cancer.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: January 10, 2023
    Assignee: Pinetree Therapeutics, Inc.
    Inventors: Yong Sung Kim, Ye Jin Kim
  • Patent number: 11535677
    Abstract: Provided herein are single-domain antibodies targeting BCMA, and chimeric antigen receptors (such as monovalent CAR, and multivalent CAR including bi-epitope CAR) having one or more anti-BCMA single-domain antibodies. Further provided are engineered immune effector cells (such as T cells) having the chimeric antigen receptors. Pharmaceutical compositions, kits and methods of treating cancer are also provided.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: December 27, 2022
    Assignee: LEGEND BIOTECH USA INC.
    Inventors: Xiaohu Fan, Qiuchuan Zhuang, Pingyan Wang, Lin Wang, Lei Yang, Jiaying Hao, Dan Zhao, Xian He
  • Patent number: 11512289
    Abstract: Compositions disclosed herein, and methods of use thereof included those for inhibiting or reducing the incidence of cytokine release syndrome or cytokine storm in a subject undergoing CAR T-cell therapy, wherein the subjects are administered compositions including apoptotic cells or apoptotic cell supernatants. In certain instances compositions and methods of use thereof disclosed herein do not reduce the efficacy of the CAR T-cell cancer therapy. Disclosed herein are also compositions and methods of use thereof for decreasing or inhibiting cytokine production in a subject experiencing cytokine release syndrome or cytokine storm including administration of a composition including apoptotic cells or an apoptotic cell supernatant.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: November 29, 2022
    Assignee: Enlivex Therapeutics RDO Ltd
    Inventors: Shai Novik, Dror Mevorach
  • Patent number: 11484524
    Abstract: Compositions and methods of enhancing the potency and efficacy of adoptive cell therapy using integrin-ligand stabilizers, wherein the integrin is selected from the group consisting of ?4?1, ?5?1, ?4?7, ?v?3 and ?L?2, and contacting the effector cells ex vivo with agonists or stabilizers having the general Formula (I); methods of treating integrin-expressing cells with such stabilizers to enhance tumor infiltration; and therapeutic methods comprising administering stabilizer or agonist-treated cells to a mammal requiring treatment of solid tumors, hematologic cancers.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 1, 2022
    Assignee: 7 Hills Pharma LLC
    Inventor: Upendra K. Marathi
  • Patent number: 11472877
    Abstract: The present disclosure is generally directed to compositions that include antibodies, e.g., monoclonal, chimeric, humanized antibodies, antibody fragments, etc., that specifically bind a TREM1 protein, e.g., a mammalian TREM1 or human TREM1, and use of such compositions in preventing, reducing risk, or treating an individual in need thereof.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: October 18, 2022
    Assignee: Alector LLC
    Inventors: Andrew Pincetic, Arnon Rosenthal, Helen Lam, Francesca Avogadri-Connors, Seung-Joo Lee
  • Patent number: 11466095
    Abstract: Novel anti-cancer agents, including, but not limited to, antibodies and immunoconjugates, that bind to CD37 are provided. Methods of using the agents, antibodies, or immunoconjugates, such as methods of inhibiting tumor growth are further provided.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 11, 2022
    Inventors: Jutta Deckert, Peter Park, Daniel Tavares, Lingyun Rui
  • Patent number: 11459395
    Abstract: The present invention relates to novel binding agents and their use in medicine. In particular, the invention relates to binding agents such as bispecific antibodies binding human PD-L1 and binding human CD137. The invention furthermore relates to uses of the antibodies of the invention and to methods, nucleic acid constructs and host cells for producing antibodies of the invention.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: October 4, 2022
    Assignees: GENMAB A/S, BIONTECH SE
    Inventors: Isil Altintas, David Satijn, Rik Rademaker, Paul Parren, Ugur Sahin, Friederike Gieseke, Alexander Muik, Christian Grunwitz, Edward Van den Brink, Dennis Verzijl
  • Patent number: 11447561
    Abstract: The present disclosure describes antibodies including caninized antibodies against canine PD-L1 with specific properties. The document relates to epitopes of canine PD-L that bind to these antibodies, as well as to anti-canine PD-L1 antibodies that bind these epitopes, and to the use of the caninized anti-canine PD-L1 antibodies in the treatment of cancer in dogs.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: September 20, 2022
    Assignee: Intervet, Inc.
    Inventors: Mohamad Morsey, Yuanzheng Zhang, Denise Bartels-Morozov, Jason Erskine, Ian Tarpey
  • Patent number: 11447567
    Abstract: The present invention relates to a bispecific antibody construct comprising a first binding domain which binds to human FLT3 on the surface of a target cell and a second binding domain which binds to human CD3 on the surface of a T cell. Moreover, the invention provides a polynucleotide encoding the antibody construct, a vector comprising said polynucleotide and a host cell transformed or transfected with said polynucleotide or vector. Furthermore, the invention provides a process for the production of the antibody construct of the invention, a medical use of said antibody construct and a kit comprising said antibody construct.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: September 20, 2022
    Assignee: AMGEN RESEARCH (MUNICH) GMBH
    Inventors: Tobias Raum, Claudia Blümel, Franziska Bott, Christoph Dahlhoff, Patrick Hoffmann, Elisabeth Nahrwold, Jochen Pendzialek
  • Patent number: 11447557
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 20, 2022
    Assignees: Agenus Inc., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd.
    Inventors: Nicholas S. Wilson, Jeremy D. Waight, Gerd Ritter, David Schaer, Daniel Hirschhorn-Cymerman, Taha Merghoub, Ekaterina V. Breous-Nystrom, Volker Seibert, Takemasa Tsuji, Olivier Léger, Dennis J. Underwood, Marc Van Dijk
  • Patent number: 11447573
    Abstract: Disclosed herein are multispecific, such as bispecific, antigen binding proteins comprising a first antigen binding domain comprising a heavy chain variable domain and a light chain variable domain, and a second antigen binding domain comprising a single-domain antibody. Pharmaceutical compositions comprising the multispecific antigen binding proteins, kits and methods of use thereof are further provided.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 20, 2022
    Assignee: NANJING LEGEND BIOTECH CO., LTD.
    Inventors: Chuan-Chu Chou, Yafeng Zhang, Shu Wu, Zhenyu Liu, Zhongdao Li, Fangliang Zhang
  • Patent number: 11426452
    Abstract: The disclosure relates to polypeptides and pharmaceutical compositions comprising polypeptides that find use in the prevention or treatment of cancer, in particular breast cancer, ovarian cancer and colorectal cancer. The disclosure also relates to methods of inducing a cytotoxic T cell response in a subject or treating cancer by administering pharmaceutical compositions comprising the peptides, and companion diagnostic methods of identifying subjects for treatment. The peptides comprise T cell epitopes that are immunogenic in a high percentage of patients.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: August 30, 2022
    Assignee: Treos Bio Limited
    Inventors: Julianna Lisziewicz, Levente Molnár, Eniko R. Toke, József Toth, Orsolya Lorincz, Zsolt Csiszovszki, Eszter Somogyi, Katalin Pántya, Mónika Megyesi
  • Patent number: 11427650
    Abstract: The present invention provides dual specificity antibody fusion proteins comprising an antibody Fab or Fab? fragment with specificity for an antigen of interest, said fragment being fused to at least one single domain antibody which has specificity for a second antigen of interest.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: August 30, 2022
    Assignee: UCB BIOPHARMA SRL
    Inventors: David Paul Humphreys, Emma Dave, Laura Griffin, Sam Philip Heywood
  • Patent number: 11419948
    Abstract: Ultra-low crosslinked microgels made of an ultra-low crosslinked polymer are provided. The microgels, also referred to as Platelet-like Particles (PLPs), preferably have <0.5% crosslinking densities. One or more of the polymers are conjugated with a fibrin-binding element or moiety, preferably H6, in an amount effective to confer to the microgel selective binding to fibrin under physiological conditions. The PLPs can recapitulate multiple key functions of platelets including binding, stabilizing and enhancing fibrin clot formation, responsiveness to injury cues, and induction of clot contraction. In a preferred embodiment, the microgel or PLP has little or no binding to soluble fibrinogen under physiological conditions compared to its binding to fibrin. The microgels or PLPs are prepared using crosslinker-free synthesis conditions, and can promote or induce clotting and clot contraction.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: August 23, 2022
    Assignees: Georgia Tech Research Corporation, University of Virginia Patent Foundation, North Carolina State University
    Inventors: Thomas H. Barker, Ashley Carson Brown, Louis Andrew Lyon, Sarah E. Stabenfeldt, Nicole Welsch, John Nicosia
  • Patent number: 11401342
    Abstract: The invention relates to improved binding molecules that bind specifically to prostate specific membrane antigen (PSMA), in particular, single human variable heavy chain domain antibodies and related methods for treatment of cancer.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: August 2, 2022
    Assignee: CRESCENDO BIOLOGICS LIMITED
    Inventors: Nikki Royle, Steve Vance, Viviane Zelenay
  • Patent number: 11401343
    Abstract: The present invention relates to an anti-MSLN antibody and a pharmaceutical composition for cancer treatment comprising same. The anti-MSLN antibody according to the present invention has high affinity and specificity for MSLN and thus can be effectively used in cancer prevention or treatment.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: August 2, 2022
    Assignees: GREEN CROSS CORPORATION, MOGAM INSTITUTE FOR BIOMEDICAL RESEARCH
    Inventors: Ki Su Kim, Jung Hong Jeong, Dong Sik Kim, Yang Mi Lim, Yong Yea Park, Hyung Kwon Lim, Jong Wha Won
  • Patent number: 11396555
    Abstract: Provided is a monoclonal antibody which specifically recognizes B cell lymphoma cells and a use thereof. More specifically, provided are the monoclonal antibody; a pharmaceutical composition for preventing or treating B cell lymphoma including the monoclonal antibody; a composition for diagnosing B cell lymphoma including the monoclonal antibody; a method for providing information for diagnosing B cell lymphoma using the monoclonal antibody; a chimeric antigen receptor (CAR) protein including i) the antibody, ii) a transmembrane domain, and iii) an intracellular signaling domain; a recombinant vector which expresses the CAR protein; a CAR-modified T cell transformed with the recombinant vector; a pharmaceutical composition for preventing or treating B cell lymphoma including the CAR-modified T cell; and an antibody-drug conjugate wherein the monoclonal antibody and a drug are conjugated.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: July 26, 2022
    Assignee: Eutilex Co., Ltd.
    Inventors: Byoung Se Kwon, Kwang-Hui Kim, Young-Ho Kim, Ho-sik Oh, Don-Gil Lee, Seung-Joo Lee, Beom-Kyu Choi, Insoo Park, Chungyong Han
  • Patent number: 11370842
    Abstract: Provided herein are, inter alia, antibodies capable of binding Interleukin-1 receptor accessory protein (IL1RAP). The antibodies provided herein include novel light chain and heavy chain sequences and bind IL1RAP with high efficiency and specificity. The anti-IL1RAP antibodies provided herein are, inter alia, useful for the treatment of IL1RAP-expressing cancers such as AML.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: June 28, 2022
    Assignee: CITY OF HOPE
    Inventors: Weixu Meng, Guido Marcucci