Patents Examined by Brad Duffy
  • Patent number: 10752670
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from a GD3 monoclonal antibody, conferring specific immunity against GD3 positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating solid tumors such as melanomas, carcinomas or liquid tumor such as T-cell lymphoblastic leukemia.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: August 25, 2020
    Assignee: CELLECTIS
    Inventors: Julianne Smith, Cècile Schiffer-Mannioui
  • Patent number: 10752684
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from a ROR1 monoclonal antibody, conferring specific immunity against ROR1 positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating lymphomas and leukemia, and for solid tumors such as breast, colon, lung, and kidney tumors.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: August 25, 2020
    Assignee: CELLECTIS
    Inventor: Cècile Schiffer-Mannioui
  • Patent number: 10744157
    Abstract: Antigen binding fragments, chimeric antigen receptors, and bi-specific T-cell engagers having specificity for MICA and methods for using the same in the diagnosis and treatment of disorders associated with MICA and/or MICB expression are provided.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: August 18, 2020
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Charles Sentman, Michael Battles
  • Patent number: 10738279
    Abstract: Provided herein are NK-92 cells expressing at least one CAR and at least one Fc receptor. Also provided are methods of treatment of a patient having or suspected of having a disease that is treatable with NK-92 cells, such as cancer, comprising administering to the patient NK-92-Fc-CAR.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 11, 2020
    Assignee: NantKwest, Inc.
    Inventor: Tien Lee
  • Patent number: 10736921
    Abstract: This invention is directed to treatment of a subject having or suspected of having a cancer comprising administering to the subject a monoclonal antibody and NK-92 expressing Fc receptor.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: August 11, 2020
    Assignee: NantKwest, Inc.
    Inventors: Tien Lee, Hans G. Klingemann, Barry J. Simon, Laurent Boissel
  • Patent number: 10730935
    Abstract: An object of the present invention is to provide: an anti-GPC3 antibody that recognizes an epitope different from that for existing antibodies (e.g., GC33 and GC199) and can specifically bind, even in the form of single chain antibody, to GPC3 localized on a cell membrane; CAR comprising the anti-GPC3 single chain antibody; an immunocompetent cell expressing the CAR; a gene of the anti-GPC3 antibody or a gene of the CAR; a vector comprising the anti-GPC3 antibody gene or the CAR gene; a host cell in which the vector has been introduced; a method for specifically detecting GPC3; and a kit for specifically detecting GPC3. An antibody comprising particular heavy chain CDR1 to CDR3 and particular light chain CDR1 to CDR3 defined in claim 1, and specifically binding to a human-derived GPC3 polypeptide specifically binds to GPC3 localized on a cell membrane. CAR-immunocompetent cells prepared on the basis of CAR comprising such single chain antibody are useful for cancer immunotherapy.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: August 4, 2020
    Assignees: Yamaguchi University, National Cancer Center, Noile-Immune Biotech, Inc.
    Inventors: Koji Tamada, Yukimi Sakoda, Tetsuya Nakatsura, Keigo Saito
  • Patent number: 10696743
    Abstract: Methods that involve detection of a DSG3 protein for diagnosing cancer are disclosed. In lung cancer, the expression of DSG3 was found to be enhanced at very high frequency at the gene level and protein level. Methods of the present invention can be carried out using an antibody that recognizes a DSG3 protein. Pharmaceutical compositions, cell growth inhibitors, and anticancer agents containing a DSG3-binding antibody as an active ingredient are also disclosed. Methods of inducing cell damage in DSG3-expressing cells and methods of suppressing proliferation of DSG3-expressing cells by contacting the DSG3-expressing cells with DSG3-binding antibodies are also disclosed.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: June 30, 2020
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Hiroyuki Aburatani, Shunpei Ishikawa, Hirotaka Ito, Kiyotaka Nakano, Shigeto Kawai
  • Patent number: 10689444
    Abstract: The invention relates to recombinant monovalent antibodies which are heterodimers of a first protein chain comprising the variable domain of the heavy chain of an antibody of interest and the CH2 and CH3 domains of an IgG immunoglobulin and a second protein chain comprising the variable domain of the light chain of said immunoglobulin of interest and the CH2 and CH3 domains of said IgG immunoglobulin. These antibodies can be used in particular as therapeutic agents in all cases where monovalent binding to a ligand such a cellular receptor is required.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: June 23, 2020
    Assignees: OSE Immunotherapeutics, Institut National de la Sante et de la Recherche Medicale
    Inventors: Bernard Vanhove, Caroline Mary, Flora Coulon
  • Patent number: 10676523
    Abstract: The present invention relates to methods for the treatment of disease, notably cancer, using antibodies that specifically bind and inhibit human NKG2A. Included are therapeutic regimens that provide improved efficacy of anti-NKG2A antibodies.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: June 9, 2020
    Assignee: INNATE PHARMA
    Inventors: Pascale Andre, Mathieu Blery, Carine Paturel, Caroline Soulas, Nicolaï Wagtmann
  • Patent number: 10662247
    Abstract: The present invention provides antibody compositions, including, e.g., antibodies, engineered antibodies and antibody fragments that bind to a tumor necrosis factor receptor superfamily member (i.e., 18). Provided compositions are useful in enhancing CD4+ and CD8+ T cell responses, and in the treatment, amelioration and prevention of diseases that can be counteracted with an augmented immune response, e.g., cancers. Also provided in the invention are polynucleotides and vectors that encode such molecules and host cells that harbor the polynucleotides or vectors; as well as pharmaceutical compositions that comprise such molecules and methods of use thereof.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: May 26, 2020
    Assignee: Novartis AG
    Inventors: Jennifer Brogdon, Daniela Cipolletta, Glenn Dranoff, Deborah A. Knee, Fei Wang
  • Patent number: 10633426
    Abstract: The presently disclosed subject matter provides for methods and compositions for treating multiple myeloma. It relates to chimeric antigen receptors (CARs) that specifically target a G-protein coupled receptor (e.g., a G-protein coupled receptor family C group 5 member D (GPRC5D)), and immunoresponsive cells comprising such CARs. The presently disclosed CARs targeting a G-protein coupled receptor (e.g., GPRC5D) have enhanced immune-activating properties, including anti-tumor activity.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: April 28, 2020
    Assignees: MEMORIAL SLOAN KETTERING CANCER CENTER, EUREKA THERAPEUTICS, INC.
    Inventors: Renier J. Brentjens, Eric L. Smith, Cheng Liu
  • Patent number: 10611848
    Abstract: Antibody which binds to the O-acetylated-GD2 ganglioside, includes: a) a light chain including three light chain complementary regions (CDRs) having the following amino acid sequences: CDR1: QSLLKNNGNTFL (SEQ id no 1), CDR2: KVS, CDR3: SQSTHIPYT (SEQ id no 2); and a light chain framework sequence from an immunoglobulin light chain, including the human kappa (?)CL domain; and b) a heavy chain including three heavy chain complementary regions (CDRs) having the following amino acid sequences: CDR1: EFTFTDYY (SEQ id no 3), CDR2: IRNRANGYTT (SEQ id no 4), CDR3: ARVSNWAFDY (SEQ id no 5), and a heavy chain framework sequence from an immunoglobulin heavy chain, including CH2 and CH3 domains from a human IgG1, and a CH1 domain from a human IgG1, which is mutated to restore pairing between CH1 and light chain that is typical of other human IgG subclasses or substituted by a CH1 domain from such non-IgG1 subclasses as human IgG2, IgG3 or IgG4.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: April 7, 2020
    Assignees: OGD2 PHARMA, UNIVERSITE DE NANTES
    Inventors: Jean-Marc Le Doussal, Mickael Terme, Mylene Dorvillius
  • Patent number: 10603388
    Abstract: The present invention provides improved methods for formulating therapeutic compositions comprising an antibody drug conjugate (“ADC”) that reduce potency variability between batches of ADC and provide for administration of such therapeutic compositions within a narrow intended range.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: March 31, 2020
    Assignee: ImmunoGen, Inc.
    Inventors: Gillian Payne, Robert W. Herbst, Juma Bridgewater
  • Patent number: 10578621
    Abstract: A biomarker PNCK for predicting an efficacy of a dual-targeting agent that targets both c-Met and EGFR and a method of predicting an effect of a dual-targeting agent that targets both c-Met and EGFR, selecting the subject for application of a dual-targeting agent that targets both c-Met and EGFR, or monitoring an effect of a dual-targeting agent that targets both c-Met and EGFR, including measuring a level of a PNCK and/or a PNCK coding gene.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: March 3, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ji Min Lee, Bo Gyou Kim, Kyung Ah Kim, Seung Ja Oh
  • Patent number: 10556963
    Abstract: The invention provides human AML-specific binding compounds that are able to bind a cell surface component of AML cells. Therapeutic uses of binding compounds against AML are also provided.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 11, 2020
    Assignee: AIMM THERAPEUTICS B.V.
    Inventors: Hergen Spits, Tim Beaumont, Marijn Aletta Gillissen, Adrianus Quirinus Bakker, Mette Deborah Hazenberg, Martijn Kedde
  • Patent number: 10551385
    Abstract: Method of determining a likelihood of cancer relapse in a subject who has completed cancer tumor surgery, radiotherapy treatment and/or chemotherapy treatment comprises contacting an antibody that binds specifically to a serum form of thymidine kinase 1 (STK1) protein with a blood serum sample one to six months after completing the surgery and/or treatment, and before any cancer relapse has been detected; determining an amount of antibody binding to STK1 protein in the sample; correlating the amount of antibody binding to STK1 protein to a concentration of STK1 protein in the sample; and based on the concentration of STK1 protein in the sample, generating decision support information representative of a likelihood of cancer relapse in the subject one to ten years after completion of the surgery and/or treatment, the decision support information comprising a likelihood value defining one of a high or low likelihood of cancer relapse.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: February 4, 2020
    Assignee: AROCELL AB
    Inventors: Sven Skog, Staffan Eriksson, Bernard Tribukait, Qimin He
  • Patent number: 10550194
    Abstract: The present disclosure describes antibodies including caninized antibodies against canine PD-L1 with specific properties. The document relates to epitopes of canine PD-L1 that bind to these antibodies, as well as to anti-canine PD-L1 antibodies that bind these epitopes, and to the use of the caninized anti-canine PD-L1 antibodies in the treatment of cancer in dogs.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: February 4, 2020
    Assignee: Intervet Inc.
    Inventors: Mohamad Morsey, Yuanzheng Zhang, Denise Bartels-Morozov, Jason Erskine, Ian Tarpey
  • Patent number: 10544211
    Abstract: The present invention relates to amino acid sequences, compounds and polypeptides binding to tumor necrosis factor alpha (“TNF” or “TNF-alpha”). In particular, the present invention relates to improved heavy-chain immunoglobulin single variable domains (also referred to herein as “ISV's” or “ISVDs”) binding to tumor necrosis factor alpha, as well as to proteins, polypeptides and other constructs, compounds, molecules or chemical entities that comprise such ISVDs, collectively TNF binders. Other aspects, embodiments, features, uses and advantages of the invention will be clear to the skilled person based on the disclosure herein.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: January 28, 2020
    Assignee: Ablynx N.V.
    Inventors: Marie-Ange Buyse, Joachim Boucneau, Peter Casteels, Gino Van Heeke
  • Patent number: 10526409
    Abstract: The present invention provides isolated anti-human NKG2D monoclonal antibodies useful for therapeutic applications in humans. Typically, the antibodies are fully human or humanized to minimize the risk for immune responses against the antibodies when administered to a patient. Preferred antibodies include human monoclonal antibodies MS and 21F2. As described herein, other antigen-binding molecules such as, e.g., antigen-binding antibody fragments, antibody derivatives, and multi-specific molecules, can be designed or derived from such antibodies.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: January 7, 2020
    Assignee: Novo Nordisk A/S
    Inventors: Birgitte Urso, Peter Andreas Nicolai Reumert Wagtmann, Inger Lund Pedersen, Anders Svensson
  • Patent number: 10517936
    Abstract: The present invention provides vaccines comprising carbohydrate antigen conjugated to a diphtheria toxin (DT) as a carrier protein, wherein the ratio of the number of carbohydrate antigen molecule to the carrier protein molecule is higher than 5:1. Also disclosed herein is a novel saponin adjuvant and methods to inhibit cancer cells, by administering an effective amount of the vaccine disclose herein.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: December 31, 2019
    Assignee: OBI Pharma., Inc.
    Inventors: Wei Han Lee, Nan-Hsuan Wang, Chung Hao Chang, Yih-Huang Hsieh, Cheng Der Tony Yu, Cheng-Chi Wang, Yu-Hsin Lin, Yu-Chen Lin, I-Ju Chen