Abstract: A bipolar, element averaging, digital to analog signal converter including a delta-sigma digital to analog converter (".increment..SIGMA. DAC") with dual sequence controllers for controlling the switching sequences of the array of sampling capacitors used to sample a fixed reference voltage in the sample and hold amplifier. The sequence controllers receive the input digital signal and a sign bit which indicates whether the numeric value of the digital signal is positive or negative with respect to the mean value of its total dynamic range. Based upon the sign bit and the value of the digital signal, the sequence controllers generate two sets of switching sequence control signals: "positive" and "negative." Those digital signals whose numeric values are positive and negative with respect to the mean value are considered to be "positive" and "negative" signals, respectively, with corresponding positive and negative analog signals generated accordingly.
Abstract: A turn-on control circuit having a comparator supplied with a turn-on voltage increasing gradually during the turn-on phase of a device for protection. When the control voltage reaches a predetermined value, the comparator supplies a diagnostic enabling signal to a diagnostic stage, which, in the event an undesired condition is detected at an output of the device, supplies a clamp enabling signal to the control terminal of a clamping transistor located between the input of the circuit and ground, and which, when enabled, prevents the turn-on voltage from increasing further, and so prevents the device from being turned on.
Abstract: An improved analog-to digital converter employs multiple sample and hold circuits to simultaneously supply multiple neural network A/D converters with samples of an analog input voltage so that the neural networks may simultaneously perform conversion of the different samples into a lower-order portion of the digital signals. A single fast A/D converter converts each sample into a higher-order portion of each digital signal.
Abstract: An ADC system in which raw ADC data is received and digitally manipulated to increase the accuracy of the resultant digital output word. In one embodiment, the digital manipulation of this invention is performed on data which has been preliminarily adjusted for errors caused by use of an interstage gain less than ideal. In one embodiment, digital correction is performed based only on the errors of a plurality of most significant bit stages, rather than all stages, as the effect on error of the digital output word is of decreasing importance for stages of less significance. In accordance with one embodiment of this invention, offset error and full scale error are determined by applying .+-.Vref as an input signal to the ADC. These values allow the raw digital data from the ADC to be compensated in either hardware or software to provide a more accurate digital representation of the analog input voltage being measured.
Abstract: An analog-to-digital conversion system for converting an analog signal to a digital signal for recording is configured to detect a low level period of the analog signal, amplify a low noise in the analog signal in the detected period by a predetermined multiplying ratio or by an amount corresponding to the signal amplitude, and subtract from the converted digital signal a number of bits corresponding to the amplification degree in the same period after analog-to-digital conversion, so as to reduce the influence of a noise entering in the analog signal before analog-to-digital conversion.