Patents Examined by Brian M. Healy
  • Patent number: 8174632
    Abstract: A stereoscopic liquid crystal display includes an LCD panel with an upper substrate, a lower substrate disposed opposite the upper substrate, and a liquid crystal material between the upper and lower substrates. A lenticular plate is disposed above the LCD panel. An hole is formed in the lenticular plate. The hole provides and air conduit that communicates in a space between a surface of the LCD panel and a surface of the lenticular plate. The hole is configured to facilitate evacuation of air from the space between LCD panel and the lenticular plate. A sealant material is disposed in a predetermined pattern between the surfaces of the LCD panel and the lenticular plate. Air is evacuated through the hole and a vacuum is formed in the space between the LCD panel and the lenticular plate. The vacuum minimizes or eliminates a gap between the surfaces of the LCD panel and the lenticular plate.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: May 8, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Kyeong Jin Kim, Su Dong Roh, Jae Hyun Soh
  • Patent number: 8169583
    Abstract: A thin film transistor array panel includes; a substrate including a display area and a peripheral area, a display area signal line disposed in the display area, a display area thin film transistor connected to the display area signal line, a plurality of peripheral area signal lines disposed in the peripheral area, a light-blocking member disposed on the display area signal line, the display area thin film transistor, and the plurality of peripheral area signal lines, a transparent connection electrically connecting the plurality of peripheral area signal lines to each other through a plurality of first contact holes, and a pixel electrode connected to the display area thin film transistor through a second contact hole, wherein an area density of the first contact hole in the peripheral area is less than or equal to about three times an area density of the second contact hole in the display area.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: May 1, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Young Lee, Seung-Soo Baek
  • Patent number: 8170391
    Abstract: A fiber optic strain relief assembly includes a housing having a first end and an oppositely disposed second end. The housing defines a bore that extends between the first end and the second end. The fiber optic strain relief assembly further includes a strain relief plate disposed in the bore of the housing. The strain relief plate includes a retention portion that is adapted to receive a strength member of a fiber optic cable. The retention portion includes a plurality of gripping tabs adapted to engage an outer surface of the strength member.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: May 1, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Ronald A. Beck
  • Patent number: 8165438
    Abstract: An optical cable comprises a tight-buffered optical cable and a protective sleeve which surrounds the tight-buffered optical cable. An intermediate layer surrounds the protective sleeve has tension-resistant elements. Furthermore, the optical cable contains a cable sheath which surrounds the intermediate layer, and a transitional area facing its inner surface. In this transitional area, the material of the cable sheath is mixed with the tension-resistant elements of the intermediate layer.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 24, 2012
    Assignee: CCS Technology, Inc.
    Inventors: Rainer Kamps, Dieter Erwin Kundis, Gerhard Merbach, Waldemar Stöcklein
  • Patent number: 8164730
    Abstract: A liquid crystal display includes a substrate and a plurality of pixel electrodes that are formed on the substrate, each of the pixel electrodes including first and second subpixel electrodes, wherein the first and second subpixel electrodes are adjacently disposed in a lateral direction. Each of the first and second subpixel electrodes includes at least two parallelogram shaped electrode pieces having different inclination directions and at least one of electrode pieces of the second subpixel electrode is positioned on or under the first subpixel electrode.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: April 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Gyu Kim, Hee-Joon Kim
  • Patent number: 8160406
    Abstract: An acoustic sensor includes at least one structure including at least one photonic crystal slab and an optical fiber optically coupled to the at least one photonic crystal slab, and having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing mechanically coupled to the at least one structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: April 17, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8160411
    Abstract: A diffractive beam expander (50) comprises an input grating (10), a crossed grating (20), and an output grating (30) implemented on a planar transparent substrate (7). The crossed grating (20) comprises a plurality of diffractive features (23) arranged along the lines of a first set of parallel lines (25) and along the lines of a second set of parallel lines (26) such that the lines (25) of the first set are parallel to the lines (26) of the second set. The lines of the first set have a first grating period and the lines of the second set have a second grating period. A light beam (B1) coupled into the substrate (7) by the input grating (10) impinges on the crossed grating (20) at a first location (EC1) and further locations (EC2). Interaction at the first location (EC1) provides several sub-beams (S00, S01, S10) which propagate in different directions.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 17, 2012
    Assignee: Nokia Corporation
    Inventors: Tapani Levola, Pasi Saarikko
  • Patent number: 8159631
    Abstract: An exemplary backlight module (1) includes a light guide plate (122), a first light source (125) and a second light source (126). The first light source includes first light emitting diodes (1252) and first reflective members (1253). The second light source includes second light emitting diodes (1262) and second reflective members (1263). The light guide plate includes a first light incident surface (1220) and a second light incident surface (1221) opposite to the first light incident surface. The first light source and the second light source are provided adjacent to the first light incident surface and the second light incident surface, respectively. The first light emitting diodes face the second reflective members, and the second light emitting diodes face the first reflective members.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: April 17, 2012
    Assignee: Chimei Innolux Corporation
    Inventor: Chih-Chung Hsiao
  • Patent number: 8157454
    Abstract: A receptacle (20) detachably accommodating a connector plug (34) connected to optical fibers (32) is rotatably supported by a shaft (14) provided in an installation table (10). The receptacle (20) is biased by a leaf spring (16) for biasing opposite ends of the shaft (14) in one direction. A locking/unlocking mechanism for selectively locking or unlocking the receptacle (20) connected with the connector plug (34) relative to the installation table (10) and a locking mechanism fixing portion (12) includes a locking nib (30Ra) of a lock releasing button (30R), a locking nib (30La) of a lock releasing button (30L), locking nib receiving portions (12na, 12nb) and a coil spring (31).
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: April 17, 2012
    Assignees: Yamaichi Electronics Co., Ltd., Nippon Telegraph and Telephone Corporation
    Inventors: Toshiyasu Ito, Hiromasa Tanobe, Yoshihisa Sakai, Masaru Kobayashi, Ryo Nagase
  • Patent number: 8152384
    Abstract: Push-pull fiber optic connectors and cable assemblies having a latch that is actuated by a cam surface are disclosed. The fiber optic connectors include a ferrule and a housing having the latch. A shroud fits over a portion of the housing and allows the craft to grab the shroud and push the shroud and hence the fiber optic connector into a suitable adapter or the like. Likewise, the craft can grab the shroud and pull on the same to remove the fiber optic connector out of the adapter or the like. The cam surface is disposed on a decoupling member, wherein the decoupling member is attached to the shroud so the components can move together. Methods of making the push-pull fiber optic connector are also disclosed.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Michael de Jong, Paul X. Devereaux, Ashley W. Jones, Ronald L. Mudd
  • Patent number: 8145024
    Abstract: The present invention relates to an optical communications system that allows improving OSNR while suppressing the power increase of pumping light for distributed Raman amplification. In the optical communications system, an optical fiber is laid in a transmission section between a transmitter station (or repeater station) and a receiver station (or repeater station), and optical signals are transmitted from the transmitter station to the receiver station via the optical fiber. In the optical communications system, pumping light for Raman amplification, outputted by a pumping light source provided in the receiver station, is fed into the optical fiber via an optical coupler, and the optical signals are distributed-Raman-amplified in the optical fiber. The transmission loss and the effective area of the optical fiber satisfy, at the wavelength of 1550 nm, a predetermined relationship.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: March 27, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eisuke Sasaoka, Kazuya Kuwahara
  • Patent number: 8145021
    Abstract: Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 27, 2012
    Assignee: Atomic Energy Council-Institute of Nuclear Research
    Inventors: Yi-Ping Liang, Kuo-Hsin Lin, Hwen-Fen Hong, Hwa-Yuh Shin, Cherng-Tsong Kuo
  • Patent number: 8145020
    Abstract: A semiconductor device includes a direct light-triggered thyristor triggered by an optical gate signal, a first optical fiber connected to the direct light-triggered thyristor and through which the optical gate signal is transmitted, a second optical fiber used to extend the first optical fiber, and a inter-optical-fiber relaying unit configured to connect the first optical fiber to the second optical fiber and to input the optical gate signal output from the second optical fiber to the first optical fiber.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 27, 2012
    Assignee: Toshiba Mitsubishi—Electric Industrial Systems Corporation
    Inventor: Takafumi Fujimoto
  • Patent number: 8139913
    Abstract: A fiber optic telecommunications frame is provided including termination modules positioned on left and right sides of the frame. The frame further includes left and right vertical cable guides. The frame includes a horizontal passage linking the left and right panels and the cable guides. The termination modules hold fiber optic modules with front termination locations. The fiber optic modules can house couplers, such as splitters, combiners, and wave length division multiplexers. A retention mechanism retains each fiber optic module in a partially removed position from the termination module. An adapter retainer may be removably mounted within an open front of the fiber optic modules, and a fiber optic module may include a plurality of rows of adapters.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: March 20, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Kristofer J. Bolster, Heidi L. Miller
  • Patent number: 8139172
    Abstract: A 3-dimensional display device includes a display panel for displaying image; a backlight for supplying light to the display panel; a light scattering control unit between the display panel and the backlight to scatter or transmit the light from the backlight; and a light control film over the backlight to reflect and focus the light from the backlight.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 20, 2012
    Assignee: LG Display Co., Ltd.
    Inventor: Jae-Hyun Soh
  • Patent number: 8126303
    Abstract: A low cost, high performance, low profile flexible reinforcement member that can be used for both optical and copper communications cable. The reinforcement members made according to the preferred process are more rigid than known reinforcement members, but are less rigid than glass pultruded rods. Communications cables utilizing these members are lightweight and exhibit an improved combination of strength and flexibility compared to traditional communications cables. Further, these communication cables may then be installed into underground ducts using more economical and faster installation techniques.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: February 28, 2012
    Assignee: Neptco JV, LLC
    Inventors: Thomas P. Hager, Richard N. Lehman, James R. Priest
  • Patent number: 8116600
    Abstract: Provided is a small-size optical phase modulation element and an optical modulator using it. The optical phase modulation element includes a Plasmon waveguide having a clad made of a metal material having a complex dielectric constant having a negative real part in the used wavelength and a core formed by a dielectric metal material having a complex dielectric constant having a positive real part in the used wavelength. The Plasmon waveguide is connected to an optical waveguide including a clad and a core both having a complex dielectric constant having a positive real part. The core of the Plasmon waveguide and the core of the optical waveguide are formed, at least partially, of the same semiconductor material. The Plasmon waveguide has a function to phase-modulate the incident light when voltage is applied.
    Type: Grant
    Filed: December 25, 2007
    Date of Patent: February 14, 2012
    Assignee: NEC Corporation
    Inventors: Daisuke Okamoto, Masafumi Nakada, Junichi Fujikata
  • Patent number: 8113723
    Abstract: One embodiment includes an integrated boot and release slide having a release slide and a boot. The release slide includes a main body, a plurality of arms, and a plurality of coupling structures. The arms extend from a first end of the main body. The coupling structures extend from a second end of the main body opposite the first end. The boot is overmolded over the coupling structures of the release slide and defines a cavity configured to slidably receive a communications cable.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 14, 2012
    Assignee: Finisar Corporation
    Inventors: Chris K. Togami, Tat Ming Teo, Frank J. Flens
  • Patent number: 8113724
    Abstract: A manufacturing method of an optical communication module for manufacturing the optical communication module, including the sequentially performed steps of: (1) mounting a light-emitting element and a light-receiving element on a side surface of a sub-mount substrate and mounting the sub-mount substrate on a printed circuit board such that the light-emitting and -receiving directions of the light-emitting element and light-receiving element are parallel to the printed circuit board; (2) aligning an optical waveguide; and (3) dropping resin solution on an area of the sub-mount substrate including an optical waveguide end and the light-emitting element or the light-receiving element, and curing the resin solution. According to the present invention, it is possible to provide an optical communication module which can be made thin, small and cheap.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: February 14, 2012
    Assignee: Fujikura Ltd.
    Inventors: Yoshihiro Terada, Masakazu Ohashi, Koji Azegami, Kentaro Ichii
  • Patent number: 8113721
    Abstract: An off-axis misalignment compensating fiber optic cable plug is provided. The plug has a cable interface to engage a fiber optic core end, where the fiber optic core has a cross-sectional area. The plug also includes a lens having a first surface to transceive an optical signal with a jack. The first surface has a cross-sectional area at least 30 times as large as the core cross-sectional area. The lens has a second surface to transceive optical signals with the fiber optic line core end. In one aspect, the lens has an axis and the lens first surface is convex with a radius of curvature capable of receiving an optical signal beam with a beam axis of up to ±2 degrees off from the lens axis. Even 2 degrees off-axis, the lens is able to focus the beam on the fiber optic line core end.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: February 14, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy