Patents Examined by Caìxìa Lu
  • Patent number: 11571686
    Abstract: The present disclosure provides a method that embodies a simple and effective route to remove homogeneous catalysts from solutions wherein NMR/MRI signal amplification by reversible exchange (SABRE) or parahydrogen-induced polarization (PHIP) is performed. A method for recovering a homogeneous SABRE/PHIP catalyst for reuse is also described.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: February 7, 2023
    Assignees: Board of Trustees of Southern Illinois University, Vanderbilt University, The Regents of the University of California
    Inventors: Boyd M. Goodson, Eduard Y. Chekmenev, Igor V. Koptyug, Kirill V. Kovtunov, Roman V. Shchepin, Bryce E. Kidd, Jonathan Gesiorski, Max E. Gemeinhardt, Danila A. Barskiy
  • Patent number: 11566037
    Abstract: The present invention describes a process for preparing isopropylidene bis(cyclopentadienyl)zirconium dichloride comprising the steps of: (a) reacting acetone and cyclopentadiene in the presence of sodium methoxide or sodium ethoxide so as to form 2,2-dicyclopentadienylpropane; and (b) reacting said 2,2-dicyclopentadienylpropane with zirconium(IV) chloride in the presence of n-butyl lithium so as to form isopropylidene bis(cyclopentadienyl) zirconium dichloride.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: January 31, 2023
    Assignee: LANXESS Organometallics GmbH
    Inventors: Angelika Preetz, Silvia Maus
  • Patent number: 11560394
    Abstract: A metal complex of the formula (1) InCyLMZp (1), wherein M is a group 4 metal, Z is an anionic ligand, p is number of 1 to 2, InCy is an indole fused cyclopentadienyl-type ligand of the formula (2) wherein R1 independently is a C1-C4-alkyl, m is a number of 0 to 4, R2 is a C1-C10-alkyl, C5-C10-cycloalkyl, or a C6-C10-aryl unsubstituted or substituted with C1-C10-alkyl or C1-C4-dialkyl amino, R3, R4 and R5 each is independently selected from hydrogen, C1-C4-alkyl, C6-C10-aryl unsubstituted or substituted with C1-C4-alkyl, halide, or both of C1-C4-alkyl and halide and, L is an amidinate ligand of the formula (3a) wherein the amidine-containing ligand (3a) is bonded to the metal M via the imine nitrogen atom N2, wherein R7 is independently selected from C1-C4-alkyl and halide and q is a number of 0 to 4, Sub4 is a cyclic or linear aliphatic or aromatic substituent.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: January 24, 2023
    Inventors: Georgy Pavlovich Goryunov, Oleg Vladimirovich Samsonov, Dmitry Vadimovich Uborsky, Alexander Zel'Manovich Voskoboynikov, Alexandra Berthoud, Maxence Valla
  • Patent number: 11560440
    Abstract: Catalyst system, the catalyst system comprising (i) at least one metallocene complex of formula (I) wherein Mt1 is Hf, X is a sigma-donor ligand, R1, R2, R3 are the same or different from each other and can be hydrogen or a saturated linear or branched C1-C10 alkyl, whereby the alkyl group can optionally contain up to 2 heteroatoms belonging to groups 14-16 of the periodic table, or R1 and R2 or R2 and R3 can form a ring having 4 to 6 C-atoms and 1 to 3 double bonds, R4 and R5 are the same or different from each other and can be saturated linear or branched C1-C10 alkyl, C5-C10 aryl, C6-C20 alkylaryl or C6-C20 arylalkyl groups, which can optionally contain up to 2 heteroatoms belonging to groups 14-16 of the periodic table, n can be 1 to 5, Ar is a C6-C20-aryl or -heteroaryl group, which can be unsubstituted or substituted by 1 to 5 linear or branched C1-C10 alkyl group(s), and (ii) an aluminoxane cocatalyst and (iii) optionally an aluminium alkyl compound AI(R7)3, with R7 being a linear or branched C2-C8-alk
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: January 24, 2023
    Assignee: Borealis AG
    Inventors: Luigi Maria Cristoforo Resconi, Noureddine Ajellal, Anna Fait, Irfan Saeed, Maria Ranieri, David Quin, Vyatcheslav V. Izmer, Dmitry S. Kononovich, Oleg Samsonov, Alexander Z. Voskoboynikov
  • Patent number: 11560441
    Abstract: The present disclosure relates to a method for preparing a polyolefin using a supported hybrid metallocene catalyst. According to the present disclosure, a polyolefin having a narrow molecular weight distribution can be prepared very effectively by introducing a cocatalyst in an optimum content in the presence of a supported hybrid metallocene catalyst containing two or more metallocene compounds having a specific chemical structure. The polyolefin prepared according to the present disclosure exhibits excellent uniformity in chlorine distribution in polyolefin during chlorination, thereby significantly improving elongation of the chlorinated polyolefin, compatibility with PVC and impact reinforcing performance. Thus, it exhibits excellent chemical resistance, weather resistance, flame retardancy, processability and impact strength reinforcing effect, and can be suitably applied as an impact reinforcing agent for PVC pipes and window profiles.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: January 24, 2023
    Inventors: Bog Ki Hong, Jin Young Park, Si Jung Lee, Yi Young Choi, Soung Hun Yoo, Sunghyun Park, Chang Woan Han, Sun Mi Kim
  • Patent number: 11542346
    Abstract: New bisindenyl ligand complexes and catalysts comprising those complexes. The invention is directed to improving the manufacturing of specific C1-symmetric bisindenyl complexes by modifying one of the indenyl ligands in order to improve the selectivity of the complex synthesis towards the desired anti-isomer, increase the yield and simplify the purification of the complex. The invention also relates to the use of the new bisindenyl metallocene catalysts for the production of polypropylene homopolymers or propylene copolymers.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: January 3, 2023
    Assignee: Borealis AG
    Inventors: Vyatcheslav V. Izmer, Dmitry S. Kononovich, Alexander Z. Voskoboynikov, Ville Virkkunen, Luigi Maria Cristoforo Resconi
  • Patent number: 11542351
    Abstract: The present invention relates to polyolefin. More specifically, the present invention relates to polyolefin having excellent dart drop impact strength, and exhibiting improved transparency, and such polyolefin has a density of 0.915 g/cm3 to 0.930 g/cm3 measured according to ASTM D1505; and satisfies the following requirements (provided that S1+S2+S3=1), when measuring the relative content of peak area according to melting temperature (Tm) using SSA (Successive Self-nucleation and Annealing) analysis: the content(S1) of peak area at Tm less than 100° C. is 0.33 to 0.35; the content(S2) of peak area at Tm of 100° C. or more and 120° C. or less is 0.52 to 0.56; and the content(S3) of peak area at Tm greater than 120° C. is 0.10 to 0.14.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: January 3, 2023
    Inventors: Jeongkyu Lee, Sung Min Lee, Hyojoon Lee, Chang Hwan Jang, Sung Ho Park, Seul Ki Im, Jinyoung Lee, Sung Joon Oh, Seyoung Kim, Jisoo Song
  • Patent number: 11542352
    Abstract: The present invention relates to an olefin-based polymer, which has (1) a density (d) ranging from 0.85 to 0.90 g/cc, (2) a melt index (MI, 190° C., 2.16 kg load conditions) ranging from 0.1 g/10 min to 15 g/10 min, (3) the density (d) and the melt temperature (Tm) satisfying Tm (° C.)=a×d?b of Equation 1 (2,350<a<2,500, and 1,900<b<2,100), and (4) a ratio (hardness/Tm) of the hardness (shore A) to the melt temperature (Tm) in a range of 1.0 to 1.3. The olefin-based polymer according to the present invention exhibits excellent anti-blocking properties due to having improved hardness as a low-density olefin-based polymer.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: January 3, 2023
    Inventors: Sang Eun Park, Eun Jung Lee, Hyun Jin Ju, In Sung Park, Kyung Bok Bae, Choong Hoon Lee
  • Patent number: 11535760
    Abstract: Provided herein is a composition for treating aluminum containing surfaces, wherein the composition includes a reaction product of at least one amine-functionalized organosilane and/or oligomer and/or polymer thereof and at least one fatty acid, wherein the molar ratio of the amino group/s of the at least one amine-functionalized organosilane and/or oligomer and/or polymer thereof and of the at least one fatty acid is 1.2:1 to 1:2, and wherein the at least one amine-functionalized organosilane and/or oligomer and/or polymer thereof is linked to the at least one fatty acid by at least one carboxylic acid/amine salt bond and/or at least one amide bond.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: December 27, 2022
    Assignee: Chemetall U.S., Inc.
    Inventors: Hoon Kim, Ronald Ascenzo
  • Patent number: 11530280
    Abstract: Catalyst system for producing ethylene copolymers in a high temperature solution process, the catalyst system comprising (i) a metallocene complex of formula (I), M is Hf or a mixture with Zr, provided that more than 50% by moles of the complex of Formula I has M=Hf, X is a sigma ligand, R are the same or different from each other and can be saturated linear or branched C1-C10 alkyl, C5-C10 aryl, C6-C20 alkylaryl or C6-C20 arylalkyl groups, which can optionally contain up to 2 heteroatoms or silicon atoms, R1 is a C6-C20-aryl, which can be unsubstituted or substituted by one or up to 5 linear or branched C1-C10 alkyl group(s), R2 is a saturated linear or cyclic C3-C20 alkyl group or a branched CR3R4R5 group, wherein R3 is hydrogen or an C1-C20 alkyl group and R4 and R5 are the same or are different and can be an C1-C20 alkyl group and (ii) a boron containing cocatalyst.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 20, 2022
    Assignee: Borealis AG
    Inventors: Noureddine Ajellal, Anna Fait, Luigi Resconi, Vyatcheslav Izmer, Dmitry Kononovich, Alexander Voskoboynikov, Rafael Sablong, Timo Sciarone
  • Patent number: 11525020
    Abstract: The present disclosure generally relates to processes to produce alpha-olefin oligomers and poly alpha-olefins. In an embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin and a first catalyst system comprising a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes PAO dimer comprising at least 96 mol % of vinylidene and 4 mol % or less of trisubstituted vinylene and disubstituted vinylene, based on total moles of vinylidene, trisubstituted vinylene, and disubstituted vinylene. The method includes introducing the first reactor effluent, a second alpha-olefin and a second catalyst composition comprising an acid catalyst into a second reactor under second reactor conditions to form a second reactor effluent comprising PAO trimer.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: December 13, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Monica D. Lotz, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Patent number: 11518870
    Abstract: The present invention relates to an olefin-based polymer, which has (1) a density (d) ranging from 0.850 to 0.865 g/cc, (2) a melt index (MI, 190° C., 2.16 kg load conditions) ranging from 0.1 g/10 min to 3.0 g/10 min, and (3) a soluble fraction (SF) of 10 wt % or more at ?20° C. in cross-fractionation chromatography (CFC), in which a weight average molecular weight (Mw) of the soluble fraction is in a range of 50,000 g/mol to 500,000 g/mol. The olefin-based polymer according to the present invention exhibits improved anti-blocking properties as a low-density olefin-based polymer.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: December 6, 2022
    Inventors: Eun Jung Lee, Hyun Jin Ju, In Sung Park, Sang Eun Park, Kyung Bok Bae, Choong Hoon Lee
  • Patent number: 11518825
    Abstract: Embodiments of the present disclosure are directed towards catalyst formulations including a metallocene and a stearic compound selected from bis 2-hydroxyethyl stearyl amine, aluminum distearate, and combinations thereof, where the metallocene is represented by the following formula: (Formula (I)) wherein each n-PR is n-propyl, and each X is independently CH3, Cl, or F.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: December 6, 2022
    Assignee: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, John F. Szul, Haiqing Peng, James M. Farley, Bruce J. Savatsky, Brandon C. Locklear
  • Patent number: 11518824
    Abstract: A nano platelet gibbsite treated with compound of formula (ORa)3Si—Rb or of formula Rc—COOH wherein Ra equal to or different from each other is a C1-C10 alkyl radical; Rb is a C5-C30 hydrocarbon radical and Rc is a C5-C30 hydrocarbon radical is used as a catalyst support.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: December 6, 2022
    Assignees: Basell Polyolefine GmbH, Albert-Ludwias-Universität Freiburo
    Inventors: Shahram Mihan, Heike Gregorius, Volker Fraaije, Rolf Mulhaupt, Fan Zhong
  • Patent number: 11505625
    Abstract: A process for preparing an olefin polymer, including the steps of forming a particulate olefin polymer in a gas-phase polymerization reactor in the presence of a C3-C5 alkane as polymerization diluent, separating discharged polyolefin particles from concomitantly discharged gas at a pressure from 1 to 2.2 MPa, degassing the polyolefin particles at a pressure from 0.1 to 0.4 MPa with a gas made from or containing a C3-C5 alkane; and transferring the separated gas and the gas from the degassing to a work-up unit operated at a pressure from 0.001 to 0.2 MPa below the pressure of the separation, wherein the gas for degassing is continuously received from the work-up unit.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: November 22, 2022
    Assignee: Basell Polyolefine GmbH
    Inventors: Gabriele Mei, Giulia Mei, Giuseppe Penzo
  • Patent number: 11492452
    Abstract: A main purpose of the present invention is to provide a multi-block copolymer composition having good elasticity and excellent stress relaxation properties, as well as small tension set. The present invention achieves the purpose by providing a multi-block copolymer composition obtained by a modification treatment, the composition including a block copolymer B formed by introducing a functional group capable of forming a non-covalent bond to a block copolymer A; wherein the block copolymer A includes a block copolymer A1 having a specific primary structure and a block copolymer A2 having a specific primary structure, and the mass ratio (A1/A2) of the block copolymer A1 and the block copolymer A2 is 100/0 to 50/50.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: November 8, 2022
    Assignees: ZEON CORPORATION, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Kousuke Isobe, Sadaharu Hashimoto, Atsushi Nozawa, Atsushi Noro, Takato Kajita, Yushu Matsushita
  • Patent number: 11485802
    Abstract: A spray-dried zirconocene catalyst system comprising a zirconocene catalyst and a hydrophobic fumed silica, which supports the zirconocene catalyst. A spray-drying method of making same. Polyolefins; methods of making and using same; and articles containing same.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 1, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Wesley R. Mariott, Roger L. Kuhlman, Phuong A. Cao, C. Dale Lester, Chuan He, Swapnil B. Chandak, Pradeep Jain, John F. Szul
  • Patent number: 11485808
    Abstract: The metallocene compound represented by the following general formula (1): (the numerals and signs in the general formula (1) are as described in the description).
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: November 1, 2022
    Assignee: JAPAN POLYETHYLENE CORPORATION
    Inventors: Tsutomu Sakuragi, Yoshiyuki Ishihama
  • Patent number: 11478781
    Abstract: Catalyst systems containing a titanium alkoxymagnesium halide supported catalyst component can be used for the polymerization of olefins. The catalyst can be prepared from a microcrystalline solid alkoxymagnesium halide support having a lattice spacing in the 5 nm to 15 nm range.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 25, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffrey F. Greco, Jim B. Askew
  • Patent number: 11479573
    Abstract: A method comprising synthesizing a cyclic organic compound via reaction of an unsubstituted or substituted cyclopentene with an unsubstituted or substituted acrylic acid in the presence of phosphoric and/or sulfonic acid reagent to make the cyclic organic compound. Also, a method of synthesizing a ligand for a transition metal, and a related substituted ligand-metal complex and catalyst, from the unsubstituted or substituted cyclopentene and unsubstituted or substituted acrylic acid. Also, the cyclic organic compound, ligand, and substituted ligand-metal complex and catalyst synthesized thereby. Also a method of polymerizing an olefin with the catalyst to give a polyolefin, and the polyolefin made thereby.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: October 25, 2022
    Assignee: Univation Technologies, LLC
    Inventors: Angela I. Padilla-Acevedo, Roger L. Kuhlman