Patents Examined by Cabrena Holecek
  • Patent number: 9919267
    Abstract: A gas-liquid contactor includes: a plurality of packing material sections through which exhaust gas passes; and a plurality of liquid distributors provided upon each of the plurality of packing material sections, dispersing a CO2 absorption liquid caused to come in contact with the exhaust gas, and supplying the CO2 absorption liquid to the plurality of packing material sections. The plurality of packing material sections include a first packing material layer and a second packing material layer that have provided therein flow paths (111a, 112a) for the CO2 absorption fluid that each extend in prescribed directions (D2, D3). The first packing material layer and the second packing material layer are characterized by being laminated such that the directions (D2, D3) of extension of the flow paths (111a, 112a) in the flow direction (D1) for the exhaust gas are different from each other.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: March 20, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Yoshinori Kajiya
  • Patent number: 9919259
    Abstract: The present invention provides a gas pressurized separation system to strip a product gas from a liquid stream and yield a high pressure gaseous effluent containing the product gas. The system comprises a gas pressurized stripping apparatus, such as a column, with at least one first inlet allowing flow of one or more liquid streams in a first direction and at least one second inlet allowing flow of one or more high pressure gas streams in a second direction, to strip the product gas into the high pressure gas stream and yield through at least one outlet a high pressure gaseous effluent containing the product gas; and two or more heat supplying apparatuses provided at different locations along the column. Processes for separating a product gas from a gaseous mixture to yield a high pressure gaseous effluent containing the product gas, utilize the gas pressurized separation system described above.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: March 20, 2018
    Assignee: CARBON CAPTURE SCIENTIFIC, LLC
    Inventors: Shiaoguo Chen, Zijiang Pan
  • Patent number: 9914089
    Abstract: An absorption method includes: a step for preparing a minute passage; a main circulation step for circulating, in the minute passage, a gas as a first fluid containing a component to be absorbed and an absorbing liquid as a second fluid so that the component to be absorbed is absorbed from the gas into the absorbing liquid; and a sub-circulation step for circulating, while the gas and the absorbing liquid are circulated in the minute passage, a third fluid in the minute passage in order to raise the pressure inside the minute passage.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 13, 2018
    Assignee: Kobe Steel, Ltd.
    Inventors: Akira Matsuoka, Koji Noishiki, Akitoshi Fujisawa
  • Patent number: 9914088
    Abstract: A CO2 recovery unit for recovery and removal of CO2 in a CO2-containing flue gas using a CO2-absorbent within a CO2 absorber is provided. The CO2 absorber includes a CO2-absorbing unit for the absorption of CO2 in a CO2-containing flue gas, a main water rinsing unit that is provided on a gas flow downstream side of the CO2-absorbing unit and that uses rinsing water to recover the accompanying CO2-absorbent while cooling decarbonated flue gas, and a preliminary water rinsing unit provided between the CO2-absorbing unit and the main water rinsing unit. A portion of the rinsing water containing the CO2-absorbent that is circulated in the main water rinsing unit is withdrawn and is subjected to preliminary water rinsing in the preliminary water rinsing unit. The preliminary rinsing water is allowed to meet with a CO2-absorbent while allowing the rinsing water to directly flow down on the CO2-absorbing unit side.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: March 13, 2018
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Tsuyoshi Oishi, Takashi Kamijo
  • Patent number: 9908664
    Abstract: Systems for containing and manipulating fluids including systems and methods involving supported collapsible bags that may be used as reactors for performing chemical, biochemical and/or biological reactions contained therein are provided. Generally, a series of improvements and features for fluid containment systems such as gas delivery configurations, foam control systems and bag molding methods and articles for supported collapsible bag vessels and bioreactors are provided. For instance, in one aspect, fluids contained in a vessel can be sparged, e.g., such that a fluid is directed into a container of the vessel, and in some cases, the sparging can be controlled by rapidly activating or altering the degree of sparging as needed. Multiple spargers may be used in some cases. In another aspect, the vessel includes a seamless collapsible bag. In some cases, the collapsible bag may be injected, blown, or spin cast molded.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: March 6, 2018
    Inventors: Parrish M Galliher, Geoffrey L Hodge, Michael Fisher
  • Patent number: 9901870
    Abstract: In one embodiment, a carbon dioxide capturing system includes an absorption tower configured to bring a treatment target gas containing carbon dioxide into contact with an absorption liquid, and to discharge the absorption liquid having absorbed the carbon dioxide. The system further includes a regeneration tower configured to make the absorption liquid discharged from the absorption tower dissipate the carbon dioxide, and to discharge the absorption liquid having dissipated the carbon dioxide. The system further includes a treatment target gas line configured to introduce the treatment target gas into the absorption tower, a first introduction module configured to introduce a first gas having a higher carbon dioxide concentration than the treatment target gas into the treatment target gas line, and a second introduction module configured to introduce a second gas having a lower carbon dioxide concentration than the treatment target gas into the treatment target gas line.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: February 27, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mitsuru Udatsu, Masatoshi Hodotsuka, Hideo Kitamura, Satoshi Saito, Haruki Fujimoto, Noriko Chiba
  • Patent number: 9901861
    Abstract: Systems and processes for reducing the energy requirements of an ammonia recovery stripper in a chilled ammonia-based CO2 removal system. The systems and processes include a nanofiltration or reverse osmosis unit for physically separating the washed liquid from a wash vessel configured to receive an ammonia slip feed stream from the main absorber of the chilled ammonia-based CO2 removal system and provide first and second feed streams. Relative to the washed liquid from the wash vessel, the first feed stream has a decreased ammonia molarity whereas the second feed stream has an increased ammonia molarity. The second feed stream is then fed to the ammonia recovery stripper, which reduces steam consumption. The reduced steam consumption translates to significant energy savings, among numerous other advantages. Additionally, the systems and process provide a reduction of equipment sizes related to the stripper unit as may be desired in some applications.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 27, 2018
    Assignee: General Electric Technology GmbH
    Inventor: Sanjay Kumar Dube
  • Patent number: 9901875
    Abstract: Provided are a reclaimer that introduces a part of an absorbent that has absorbed CO2 or H2S in a flue gas through an introduction line and stores the absorbent, a heating section that heats the absorbent stored in the reclaimer to obtain recovered vapor, and a mixing tank disposed on the introduction line through which the absorbent is introduced into the reclaimer, and which introduces an absorbent (lean solution) and an alkaline agent for mixing thereof.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Shinsuke Nakatani
  • Patent number: 9901846
    Abstract: A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: February 27, 2018
    Assignee: Gas Technology Institute
    Inventors: Shaojun Zhou, Howard S. Meyer, Shiguang Li
  • Patent number: 9901845
    Abstract: The invention generally relates to processes for reducing and removing foulant and foulant precursors from regenerated amine mixtures and to equipment useful in such processes. Such amine mixtures are useful for removing one or more acidic gases such as CO2 or H2S from olefin hydrocarbon streams. A first feed comprising regenerated amine, foulant, and foulant precursors is provided. A second feed comprising aromatic hydrocarbons is provided. The first and second feeds are combined and then separated to form first and second products. The first product is an upgraded regenerated amine mixture that comprises the first feed's amine. The second product comprises second feed's aromatic hydrocarbons and a portion of the first feed's foulant.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: February 27, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael A. Radzicki, Richard A. Symes, Asit K. Mondal
  • Patent number: 9901872
    Abstract: An air pollution control system includes CO2 absorber that removes CO2, and an absorbent regenerator that releases CO2 from the amine absorbent. The CO2 absorber is equipped with a CO2 absorption unit that absorbs CO2 in the flue gas by the amine absorbent (lean solution), and a water-repellent filter unit that is provided on an upper part (gas flow downstream) side of the CO2 absorption unit and collects the mist amine absorbent accompanied by the CO2-free flue gas. The mist amine accompanied by the CO2-free flue gas is collected.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiromitsu Nagayasu, Takashi Kamijo, Yuichiro Sato, Takuya Hirata, Hiroshi Tanaka, Kouji Horizoe
  • Patent number: 9901869
    Abstract: A wet scrubber for cleaning a process gas containing sulphur dioxide comprises an absorption vessel for contacting the process gas with an absorption liquid to absorb sulphur dioxide from the process gas, a sensor for measuring a concentration in the absorption liquid, and a control unit. The control unit is adapted to receive a measurement signal from the sensor and to control, based on the measured concentration, at least one wet scrubber operating parameter influencing the concentration in the absorption liquid.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 27, 2018
    Assignee: General Electric Technology GmbH
    Inventors: Fredrik Jens Brogaard, Kerstin Margareta Forsgren, Mikael Larsson, Rikard BjoernSture HÃ¥kansson
  • Patent number: 9901859
    Abstract: An improved method for the removal of non-targeted components from a non-targeted component containing gas stream, the method includes the steps of: (i) contacting the non-targeted component containing gas stream with a fluid solvent stream; (ii) passing the product of step i) through a co-current phase separation step to produce both a non-targeted component containing solvent stream and a partially purified gas stream; (iii) passing the partially purified gas stream product of step ii) through a mass transfer step to produce a wet gas product; and (iv) passing the wet gas product of step iii) through a final co-current phase separation step to produce a purified gas stream, wherein the method is performed in a subsea location.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: February 27, 2018
    Assignee: RELEASE ENERGY PTY LTD
    Inventors: John Dermot Sullivan, David Stanbridge
  • Patent number: 9903355
    Abstract: A method of compressing a gas includes maintaining a first volume of liquid in a first high pressure chamber and maintaining a first volume of gas in a second high pressure chamber, wherein the first volume of gas is at a first pressure and the first high pressure chamber and the second high pressure chamber are fluidly connected through a high pressure pump. A pressurized gas is forced into the first high pressure chamber having the first volume of liquid and simultaneously pumping, using the high pressure pump, at least a portion of the first volume of liquid in the first high pressure chamber to the second high pressure chamber, wherein the first volume of liquid pumped into the second high pressure chamber compresses the first volume of gas in the second high pressure chamber to a second pressure greater than the first pressure.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: February 27, 2018
    Assignee: Ohio State Innovation Foundation
    Inventors: Fabio Chiara, James Durand, Robert Underhill, Gerald Fly, Matteo Triberti
  • Patent number: 9901871
    Abstract: A carbon dioxide (CO2) chemical absorption system comprising: a CO2 absorption column for separating CO2 from combustion exhaust gas by absorbing the CO2 in the combustion exhaust gas with a CO2 absorbing liquid mainly composed of an aqueous alkanolamine solution; a regeneration column for regenerating the CO2 absorbing liquid by desorbing CO2 gas from the CO2 absorbing liquid that has absorbed CO2; a condenser for condensing water vapor entrained in the desorbed CO2 gas discharged from the top of the regeneration column, thereby obtaining reflux water; a pipe for returning all or part of the reflux water obtained by the condenser to the top of the regeneration column, and dispersing the reflux water in the regeneration column; a collection plate for collecting the reflux water dispersed in an upper portion of a packed bed in the regeneration column; a pipe for sending the regenerated CO2 absorbing liquid from the bottom of the regeneration column to the top of the absorption column; and a pipe for joining th
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Hideaki Higashi, Jun Shimamura, Kazuki Kobayashi
  • Patent number: 9901863
    Abstract: A process and system for separating CO2 from a flue gas stream is disclosed. The process involves (a) contacting a flue gas stream containing water vapor and CO2 with an ionic absorbent under absorption conditions to absorb at least a portion of the CO2 from the flue gas stream and form a CO2-absorbent complex; wherein the ionic absorbent comprises a cation and an anion comprising an amine moiety; and (b) recovering a gaseous product having a reduced CO2 content.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: February 27, 2018
    Assignees: Chevron U.S.A. Inc., University of South Alabama
    Inventors: Daniel Chinn, Russell Evan Cooper, Zunqing He, James H. Davis, Jr., Kevin N. West, Hye Kyung Timken, Michael S. Driver
  • Patent number: 9901860
    Abstract: An apparatus removes acidic gases from a gas stream. The apparatus remove acid gas from a gas stream in a manner that generates a product gas stream at a higher temperature while consuming less energy than the existing technology. The apparatus enables the positive gas temperature differential to be maintained by manipulating the absorber column operating conditions and/or the solvent chemistry to increase the amount of absorption and reaction in the absorber.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: February 27, 2018
    Assignees: General Electric Technology GmbH, Dow Global Technologies LLC
    Inventors: Frederic Vitse, Craig Norman Schubert
  • Patent number: 9901873
    Abstract: CO2 absorber includes a CO2 absorbing section in which a CO2-containing flue gas and a CO2 absorbent are brought into contact with each other to remove CO2, and an aqueous cleaning section in which a decarbonated flue gas and rinsing water are brought into contact with each other to remove an accompanying substance. A lean solution is re-used in the absorber. The CO2 recovery device includes a degassing basin which is interposed in a rich solution supply line that supplies the rich solution from the CO2 absorber to the absorbent regenerator, and which includes a retaining section configured to remove oxygen in the rich solution.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Takashi Kamijo, Daisuke Shimada
  • Patent number: 9902914
    Abstract: Plants, processes, and methods for reducing the H2S and CO2 contents of shale gasses from fields that produce shale gasses having varying H2S and CO2 contents are provided. Acid gas enters an absorber and is scrubbed using a lean physical solvent, producing a treated gas and a rich physical solvent. The H2S content of the treated gas is further reduced in an amine absorber, producing a pipeline gas and a semi-lean amine. The pipeline gas contains lower levels of H2S and CO2 than gas produced using a polishing bed. A physical solvent regeneration unit regenerates the lean physical solvent from the rich physical solvent for feeding into the absorption unit. An amine regeneration unit regenerates the lean amine from the semi-lean amine for feeding into the amine absorber. Contemplated plants may further comprise a Claus Unit or a Redox unit for oxidizing H2S to elemental sulfur.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: February 27, 2018
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 9902910
    Abstract: A method and apparatus a crude oil treating apparatus includes a treating section and a flashing section connected together by a pipe and a flashing valve. The method includes the steps of passing wet crude oil into the treating section; separating water from the wet crude oil in the treating section; obtaining partially dry crude oil; passing the partially dry crude oil via the pipe and the flashing valve to the flashing section of the apparatus; heating the partially dry crude oil upstream of the flashing section and downstream of the flashing valve by heat exchange with the water separated from the crude oil in the treating section; and obtaining dry crude oil from the flashing section.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: February 27, 2018
    Assignee: AKER PROCESS SYSTEMS AS
    Inventor: Fatiha Akrour