Patents Examined by Caitlin Fogarty
  • Patent number: 8048367
    Abstract: The present invention provides high strength thick-gauge steel plate superior in weldability and having a tensile strength of 780 MPa or more and provides a method of production of the high strength thick-gauge steel plate by omitting tempering heat treatment in the production. The high strength thick-gauge steel plate of the present invention is high strength thick-gauge steel plate containing, by mass %, C: 0.030 to 0.055%, Mn: 2.4 to 3.5%, P: 0.01% or less, S: 0.0010% or less, Al: 0.06 to 0.10%, B: 0.0005 to 0.0020%, and N: 0.0015 to 0.0060%, having a weld cracking susceptibility parameter Pcm of 0.18% to 0.24%, and comprised mainly of martensite. The method of production of high strength thick-gauge steel plate of the present invention comprises heating a steel slab or cast slab having a predetermined composition of ingredients to 950 to 1100° C., rolling it at 820° C. or more, then starting accelerated cooling from 700° C. or more by a cooling rate of 8 to 80° C.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: November 1, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Manabu Hoshino, Masaaki Fujioka, Youichi Tanaka, Masanori Minagawa
  • Patent number: 8021605
    Abstract: A titanium alloy which, even under the influence of high application temperatures, has a low tendency to becoming brittle as a result of coarse grain formation, comprises (in wt. %) Fe: ?2%, Si: 0.01 to 0.8%, 0: ?0.3%, C: ?0.1%, one or more elements of the Lanthanide group at total levels of 0.01-2% and, optionally, one or more elements of Al and O at total levels of a maximum of 1%, one or more elements of Mo, Ta, Nb, Zr, Mn, Cr, Co, Ni, Cu, V, Si, and H at total levels of a maximum of 3%, the remainder being titanium and unavoidable impurities.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: September 20, 2011
    Assignee: Thyssfnkrupp VDM GmbH
    Inventors: Heinz Sibum, Jürgen Kiese, Manfred Kramer
  • Patent number: 8007716
    Abstract: A steel wire has tempered martensite, comprises, as essential components, by mass, C: 0.53 to 0.68%; Si: 1.2 to 2.5%; Mn: 0.2 to 1.5%; Cr: 1.4 to 2.5%; Al: 0.05% or less; further comprises, as a selective component, Ni: 0.4% or less; V: 0.4% or less; Mo: 0.05 to 0.5%; or Nb: 0.05 to 0.5%; and further comprises remainder essentially consisting of Fe and inevitable impurities, wherein the grain size number of prior austenite is 11.0 or larger, and the proof stress ratio (?0.2/?B), namely, a ratio of 0.2% proof stress (?0.2) to tensile strength (?B) is 0.85 or lower. Satisfying the above requirements makes it possible to produce a steel wire for high-strength spring excellent both in workability (cold workability), and in sag resistance and fatigue properties.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: August 30, 2011
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, NHK Spring Co., Ltd., Shinko Wire Co., Ltd.
    Inventors: Sumie Suda, Nobuhiko Ibaraki, Noritoshi Takamura, Naoki Terakado, Satoru Tendo, Tadayoshi Fujiwara, Tetsuo Jinbo
  • Patent number: 8002913
    Abstract: An AA7000-series alloy including 3 to 10% Zn, 1 to 3% Mg, at most 2.5% Cu, Fe <0.25%, and Si >0.12 to 0.35%, and a method of manufacturing these aluminum alloy products. More particularly, disclosed are aluminum wrought products in relatively thick gauges, in particular i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: August 23, 2011
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt
  • Patent number: 7998402
    Abstract: An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt. %: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each <0.5 wt. %, and impurities or incidental elements each <0.05, total <0.15, and the balance being aluminium.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: August 16, 2011
    Assignee: Aleris Aluminum Koblenz, GmbH
    Inventors: Nadia Telioui, Steven Dirk Meijers, Andrew Norman, Achim Buerger, Sabine Maria Spangel
  • Patent number: 7998282
    Abstract: A method of heat-treating a steel member including carburizing a steel member in a carburizing gas under a reduced pressure. The steel member is then cooled in a cooling gas having a pressure lower than atmospheric pressure. A desired portion of the cooled steel member is then heated using high-density energy. The steel member is then quenched.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 16, 2011
    Assignee: AISIN AW Co., Ltd.
    Inventors: Takao Taniguchi, Hisao Shirai, Koji Ohbayashi, Kazuaki Okada, Hideo Kanisawa, Shuji Kozawa
  • Patent number: 7998398
    Abstract: A pivoting door assembly for a downdraft cutting table assembly includes a door for covering a vent of the downdraft cutting table assembly, and an arm assembly coupled to the door. The downdraft cutting table assembly may include a cutting table for supporting a workpiece, a cutting torch assembly for positioning a cutting torch for cutting the workpiece, an exhaust duct for exhausting fumes, and a vent opening into the exhaust duct. The downdraft cutting table assembly may also include a slag removal system. The arm assembly is actuated by the cutting torch assembly as the cutting torch assembly positions the cutting torch over the cutting table. Actuation of the arm assembly by the cutting torch assembly causes the arm assembly to pivot the door open for allowing fumes from the cutting torch to be drawn into the exhaust duct.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: August 16, 2011
    Assignee: Owen Industries, Inc.
    Inventors: John R. Sunderman, Larry L. Minter
  • Patent number: 7988796
    Abstract: A method of manufacturing a sheave member for a belt-type continuously variable transmission includes a forming step wherein an intermediate product having a sheave surface is formed by forging a steel material; a carburization step wherein the intermediate product is heated in a carburization gas; a gradual cooling step wherein the cooling speed is equal to or less than 20° C./sec, at least until the temperature of the intermediate product has passed through the transformation point; a high-frequency electrical heating step wherein a selected portion(s) of the intermediate product is heated; a water quenching step wherein the selected portion is quenched by contact with water; and a finishing step wherein a grinding process is applied to the intermediate product to attain the final shape. In the cooling step, preferably, the intermediate product is contacted with a cooling gas at a pressure lower than atmospheric pressure.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 2, 2011
    Assignee: Aisin AW Co., Ltd.
    Inventors: Kouji Ohbayashi, Kazuaki Okada, Taro Matsukawa, Yutaka Eto, Koki Mizuno, Kazumichi Tsukuda
  • Patent number: 7988800
    Abstract: In order to accurately and efficiently alloy a Mg-REM-Ni based hydrogen-absorbing alloy in accordance with a target composition, which was difficult in the industrial production by the conventional technique, a rare earth element starting material and a nickel starting material are firstly melted in a melting furnace to form a melt of REM-Ni alloy, and then a magnesium starting material is added to the alloy melt and an interior of the melting furnace is kept at a given pressure to form a melt of Mg-REM-Ni alloy, and thereafter the alloy melt is cooled and solidified at a given cooling rate to produce a Mg-REM-Ni based hydrogen-absorbing alloy.
    Type: Grant
    Filed: February 21, 2005
    Date of Patent: August 2, 2011
    Assignee: Japan Metals and Chemicals Co., Ltd.
    Inventors: Masahito Osawa, Katsuyuki Kudo, Akihito Maeda, Seiji Takahashi
  • Patent number: 7988908
    Abstract: Provided is a filler metal alloy composition capable of improving appearance of a welded zone and fluidity, penetration, etc., of an inexpensive filler metal by minimizing a content of silver (Ag) and adding tin (Sn) and silicon (Si) components. The filler metal alloy composition, brazed to a joint between parent metals to stably join the parent metals formed of the same material or different materials, is characterized in that the composition comprises silver (Ag), copper (Cu), zinc (Zn), tin (Sn), silicon (Si), and other unavoidable impurities.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: August 2, 2011
    Assignee: Korea Bundy Co., Ltd.
    Inventors: Dong Ha Lee, Jae Jung Park, Chung Yun Kang, Myoung Bok Kim
  • Patent number: 7985374
    Abstract: A cadmium-free silver brazing filler metal containing gallium, indium, nickel and cerium falls into the field of metal material and metallurgy. Its chemical composition includes (by mass percentage) Cu 28.0%-35.0%, Zn 28.0%-38.0%, Ga 0.1%-2.5%, In 0.1%-2.5%, Ni 0.1%-2.5%, Ce 0.002%-0.1%, and Ag in balance.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: July 26, 2011
    Assignee: Changshu Huayin Filler Metals Co., Ltd.
    Inventors: Wenhua Gu, Liyong Gu, Songbai Xue, Jianchang Gu
  • Patent number: 7918944
    Abstract: A surface carburization technique of medical titanium alloy femoral head in total hip arthroplasty comprises subjecting medical titanium alloy TC4 to surface carburization by using acetylene as carburizing agent to carry out gaseous carburization at high temperature to give medical titanium alloy femoral head in total hip arthroplasty with TiC ceramic on surface thereof. The TiC ceramic layer on femoral head can be more than 100 micron thick, which is relatively thick, overcomes the disadvantages in available medical titanium alloy material, and is particularly useful for replacement of total hip or knee arthroplasty.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: April 5, 2011
    Assignee: China University of Mining and Technology
    Inventors: Shirong Ge, Yong Luo
  • Patent number: 7905966
    Abstract: The invention relates to a method of producing a strip of nanocrystalline material which is obtained from a wound ribbon that is cast in an amorphous state, having atomic composition [Fe1?a?bCoaNib]100?x?y?z??????CuxSiyBzNb?M??M??, M? being at least one of elements V, Cr, Al and Zn, and M? being at least one of elements C, Ge, P, Ga, Sb, In and Be, with: a ?0.07 and b ?0.1, 0.5 ?x ?1.5 and 2 ???5, 10?y?16.9 and 5?z?8, ??2 and ??2. According to the invention, the amorphous ribbon is subjected to crystallization annealing, in which the ribbon undergoes annealing in the unwound state, passing through at least two S-shaped blocks under voltage along an essentially longitudinal axial direction of the ribbon, such that the ribbon is maintained at an annealing temperature of between 530° C. and 700° C. for between 5 and 120 seconds and under axial tensile stress of between 2 and 1000 MPa.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: March 15, 2011
    Assignee: Imphy Alloys
    Inventors: Thierry Waeckerle, Thierry Save, Alain Demier
  • Patent number: 7892482
    Abstract: The invention concerns a method for producing a substance during which an aluminum base alloy is produced that has a content of 5.5 to 13.0% by mass of silicon and a content of magnesium according to formula Mg [% by mass]=1.73×Si [% by mass]+m with m=1.5 to 6.0% by mass of magnesium, and has a copper content ranging from 1.0 to 4.0% by mass. The base alloy is then subjected to at least one hot working and, afterwards, to a heat treatment consisting of solution annealing, quenching and artificial aging. The magnesium is added based on the respectively desired silicon content according to the aforementioned formula. The material obtained by using the inventive method comprises having a low density and a high strength.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: February 22, 2011
    Assignees: Mahle GmbH, Peak Werkstoff GmbH
    Inventors: Ulrich Bischofberger, Peter Krug, Gero Sinha
  • Patent number: 7892369
    Abstract: A titanium alloy subjected to thermal treatment followed by quenching. The thermal treatment raises the temperature of the alloy to a temperature above the alloy's recrystallization temperature and below the alloy's beta-transus temperature to cause a phase shift within the alloy. After the thermal treatment has been applied for a predetermined time, the alloy is rapidly quenched, preserving the phase shift induced by the thermal treatment. By the present method, the microstructure of the titanium alloy is changed from a fine grained alpha-beta phase to a microstructure substantially comprised of an equiaxed alpha phase and an acicular or plate-like alpha phase. The resulting prostheses may have a microstructure including between 25% and 75% percent acicular alpha phase, for example.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: February 22, 2011
    Assignee: Zimmer, Inc.
    Inventor: Shushil K. Bhambri
  • Patent number: 7892367
    Abstract: A tantalum sputtering target, wherein when the sum of the overall crystalline orientation is 1 on a tantalum target surface, the area ratio of crystals having any orientation among (100), (111), (110) does not exceed 0.5. Thus, obtained is a tantalum sputtering target having superior deposition properties where the deposition speed is high, film evenness (uniformity) is superior, and generation of arcings or particles is reduced.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: February 22, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Kunihiro Oda
  • Patent number: 7879165
    Abstract: The present invention provides a method for producing a magnesium alloy sheet capable of producing a magnesium alloy sheet having excellent plastic workability such as press workability. The method of the present invention includes rolling a magnesium alloy blank with a reduction roll. The rolling includes controlled rolling performed under the following conditions (1) and (2) wherein M (% by mass) is the Al content in a magnesium alloy constituting the blank: (1) the surface temperature Tb (° C.) of the magnesium alloy blank immediately before insertion into the reduction roll satisfies the following expression: 8.33×M+135?Tb?8.33×M+165 wherein 1.0?M?10.0; and (2) the surface temperature Tr of the reduction roll is 150° C. to 180° C.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: February 1, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nobuyuki Mori, Nozomu Kawabe
  • Patent number: 7879287
    Abstract: A hot-rolled steel sheet for high-strength ERW pipes contains about 0.02% to about 0.06% C; about 0.05% to about 0.50% Si; about 0.5% to about 1.5% Mn; about 0.010% or less P; about 0.0010% or less S; about 0.01% to about 0.10% Al; about 0.01% to about 0.10% Nb; about 0.001% to about 0.025% Ti; about 0.001% to about 0.005% Ca; about 0.003% or less 0; and about 0.005% or less N, and at least one element selected from the group consisting of about 0.01% to about 0.10% V; about 0.01% to about 0.50% Cu; about 0.01% to about 0.50% Ni; and about 0.01% to about 0.50% Mo on the basis of mass. The group of C, Si, Mn, Cu, Ni, Mo, and V and the group of Ca, 0, and S satisfy specific relationships, and the microstructure of the steel sheet is composed of about 95% by volume or more bainitic ferrite.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: February 1, 2011
    Assignee: JFE Steel Corporation
    Inventors: Takashi Kobayashi, Hiroshi Nakata, Chikara Kami, Toru Inazumi, Shuji Kawamura
  • Patent number: 7862666
    Abstract: A highly corrosion resistant high strength stainless steel pipe for linepipe, having a composition containing about 0.001 to about 0.015% C, about 0.01 to about 0.5% Si, about 0.1 to about 1.8% Mn, about 0.03% or less P, about 0.005% or less S, about 15 to about 18% Cr, about 0.5% or more and less than about 5.5% Ni, about 0.5 to about 3.5% Mo, about 0.02 to about 0.2% V, about 0.001 to about 0.015% N, and about 0.006% or less O, by mass, so as to satisfy (Cr+0.65 Ni +0.6Mo+0.55Cu?20C?18.5), (Cr+Mo+0.3Si?43.5C?0.4Mn?Ni?0.3Cu?9 N?11.5) and (C+N?0.025). Preferably quenching and tempering treatment is applied to the pipe. The composition may further contain about 0.002 to about 0.05% Al, and may further contain one or more of Nb, Ti, Zr, B, and W, and/or Cu and Ca. The microstructure preferably contains martensite, ferrite, and residual ?.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: January 4, 2011
    Assignee: JFE Steel Corporation
    Inventors: Mitsuo Kimura, Takanori Tamari, Yoshio Yamazaki, Ryosuke Mochizuki
  • Patent number: 7862768
    Abstract: A plain bearing is provided which has an Sn-and-Si-rich layer formed of an Al alloy containing Sn and Si, and a base material which does not contain Sn. The Sn-and-Si-rich layer have the sliding surface having an area ratio of Sn phase grains in a range of 6 to 40% and that of Si phase grains in a range of 5 to 25%.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: January 4, 2011
    Assignee: Daido Metal Company Ltd
    Inventors: Masahito Fujita, Eisaku Inoue, Shigeru Inami