Patents Examined by Cam N. Nguyen
  • Patent number: 11618008
    Abstract: Methods for preparing ceria-zirconia (CZO) materials calcined with precious group metals (PGM) include calcining a CZO material with PGM. The calcined CZO/PGM catalyst is reduced at a temperature of ?1000° C. to ?1100° C. for a time of ?0.5 hour to 1 hour to form a (CZO/PGM)-pyrochlore catalyst. The (CZO/PGM)-pyrochlore catalyst exhibits superior oxygen storage capacity characteristics as a three-way catalyst in vehicle exhaust gas systems.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 4, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Jason Wu, Giovanni Cavataio, Ann O'Neill, Natalie Roxas
  • Patent number: 11614013
    Abstract: A three-way catalyst article, and its use in an exhaust system for internal combustion engines, is disclosed. The catalyst article for treating exhaust gas comprising: a substrate comprising an inlet end and an outlet end with an axial length L; a first catalytic region comprising a first platinum group metal (PGM) component and a first oxygen storage capacity (OSC) material, wherein the first OSC material has a fresh specific surface area (SSA) of at least 10 m2/g; and wherein the first OSC material has an SSA difference of no more than 30 m2/g between the fresh first OSC material and the aged first OSC material.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: March 28, 2023
    Assignees: Johnson Matthey Public Limited Company, Johnson Matthey (Shanghai) Chemicals Limited
    Inventors: Hai-Ying Chen, Hongyu Ji, Dongsheng Qiao, Eric Tyo, Takashi Yamada, Xiang Zheng
  • Patent number: 11607672
    Abstract: Methods for exhaust gas purification, including the steps of: attaching an exhaust gas purification catalyst to an exhaust system of an internal combustion engine, and supplying an exhaust gas to the exhaust gas purification catalyst, where the exhaust gas purification catalyst includes an upper layer containing first carrier particles which are particles of an inorganic oxide and rhodium, and a lower layer containing second carrier particles which are particles of an inorganic oxide, the upper layer includes a rhodium-rich portion near the surface of the upper layer on the upstream side of the exhaust gas flow, and the existence range of the rhodium-rich portion is in a range of greater than 50% to 80% of the length of the upper layer from a downstream side end of an exhaust gas flow and of less than 20 ?m in the depth direction from an outermost surface of the upper layer.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: March 21, 2023
    Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shunsuke Oishi, Takaya Ota, Yoshinori Saito, Seiji Nakahigashi, Isao Chinzei, Hiromasa Suzuki
  • Patent number: 11602742
    Abstract: Provided is an exhaust gas purification device that ensures an improved purification performance and a suppressed pressure loss. An exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. disposed on a surface on the inflow cell side in an inflow side region of the partition wall. When a gas permeability coefficient of an inflow side partition wall portion including the inflow side region of the partition wall and the inflow cell side catalyst layer is Ka and a gas permeability coefficient of an outflow side partition wall portion including an outflow side region at least from the predetermined position to an outflow side end of the partition wall is Kb, a ratio Ka/Kb of the gas permeability coefficients is within a range of 0.4 or more and 0.8 or less.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: March 14, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa Nishioka, Naoto Miyoshi, Akemi Sato, Ryota Nakashima, Masatoshi Ikebe, Keisuke Murawaki, Hirotaka Ori
  • Patent number: 11590483
    Abstract: Aspects of the present application provides for enhanced catalytic materials, which can feature multiple functional and/or catalytic species, and methods of their formation. The materials can include catalytic nanoparticles (NPs) partially embedded within a supporting matrix. Treatment of the material, e.g., thermal, optical, microwave, plasma, and/or chemical treatment, can lead to the formation of functionally, e.g., catalytic or co-catalytic, relevant chemical and structural/morphological species or features at the NP-matrix, NP-pore, and matrix-pore interfaces. The treated material is characterized by enhanced properties, e.g., greater mechanical stability.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: February 28, 2023
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Elijah Shirman, Tanya Shirman, Joanna Aizenberg, Michael Aizenberg
  • Patent number: 11583834
    Abstract: An automotive catalytic converter includes a three-way catalyst having Rh as the only precious metal configured as a front zone and a three-way catalyst having a mixture of Rh and Pd, Pt, or both configured as a rear zone, such that an exhaust gas from an internal combustion engine passes through the front zone before passing through the rear zone to minimize sulfur poisoning of the catalytic converter.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: February 21, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Yisun Cheng, Giovanni Cavataio, Jeffrey Scott Hepburn, Mira Bumbaroska, Carolyn Parks Hubbard
  • Patent number: 11577235
    Abstract: A layered catalyst reactor system and process for hydrotreatment of hydrocarbon feedstocks. The layered catalyst system reactors comprise vertical bed layers including a demetallization catalyst layer, multiple layers of supported hydrotreating catalyst layer, and multiple alternating layers of supported hydrocracking catalysts and self-supported hydrotreating catalysts. The arrangement of the catalyst layers mitigates the risk of temperature run-aways, with improvements in hydrotreatment performance.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 14, 2023
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Axel Brait, Xiaoying Ouyang, Alexander Kuperman, Theodorus Ludovicus Michael Maesen
  • Patent number: 11571683
    Abstract: A honeycomb-structured catalyst for decomposing an organic substance, which includes a catalyst particle. The catalyst particle contains a perovskite-type composite oxide represented by AxByMzOw, where the A contains at least of Ba and Sr, the B contains Zr, the M is at least one of Mn, Co, Ni, and Fe, y+z=1, 1.001?x?1.05, 0.05?z?0.2, and w is a positive value that satisfies electrical neutrality. The toluene decomposition rate is greater than 90% when toluene is decomposed using the honeycomb-structured catalyst subjected to a heat treatment at 1200° C. for 48 hours and a gas that contains 50 ppm toluene, 80% nitrogen, and 20% oxygen as a volume concentration as a target at a space velocity of 30,000/h and a catalyst temperature of 400° C.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: February 7, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Naoya Mori, Satoshi Kuretake, Nario Sugahara, Kentaro Ishihara
  • Patent number: 11563219
    Abstract: A carrier powder is thermodynamically stable and conductivity can be easily provided thereto. A carrier powder includes an aggregate of carrier fine particles; wherein: the carrier fine particles include a chained portion structured by fusion bonding a plurality of crystallites into a chain; the carrier fine particles contain titanium oxide; and a ratio of anatase phase/rutile phase of the titanium oxide of the carrier powder is 0.2 or lower.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: January 24, 2023
    Assignee: UNIVERSITY OF YAMANASHI
    Inventors: Katsuyoshi Kakinuma, Makoto Uchida, Akihiro Iiyama
  • Patent number: 11559788
    Abstract: The problem to be solved by the present invention is to provide an oxygen storage and release material comprising a ceria-zirconia-based complex oxide improved in ability to remove HC and NOx and a three-way catalyst able to reduce an amount of NOx emission. Further, to solve this problem, an oxygen storage and release material comprising a ceria-zirconia-based complex oxide containing Gd2O3 in 0.1 mol % or more and less than 20 mol % and having an ion conductivity of 2×10?5 S/cm or more at 400° C. is provided. Further, in addition to the above, an oxygen storage and release material having a molar ratio of cerium and zirconium of 0.2 or more and 0.6 or less by cerium/(cerium+zirconium) and an speed of oxygen storage and release “?t50” of 20.0 seconds or more or amount of oxygen storage and release of 300 ?mol-O2/g or more etc. was obtained.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: January 24, 2023
    Assignees: NIPPON DENKO CO., LTD., JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Keigo Aihara, Tomoharu Itoh, Hirofumi Konno, Shuhei Nagaoka, Takashi Yamada
  • Patent number: 11534736
    Abstract: Emissions treatment systems of combustion engines are provided, which comprise a platinum-containing catalyst that is degreened during production, which is before exposure to operating conditions of a vehicle having a diesel engine. The platinum-containing catalyst, in the form of a platinum component on a high surface area refractory metal oxide support, exhibits a vibration frequency of about 2085 to about 2105 cm?1 as measured by CO-DRIFTS. Such catalytic material is essentially-free of platinum oxide species found at greater than about 2110 cm?1 as measured by CO-DRIFTS. Such catalysts can provide excellent and consistent conversion of nitrogen oxide (NO) to nitrogen dioxide (NO2).
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: December 27, 2022
    Assignee: BASF CORPORATION
    Inventors: Xinyi Wei, Stanley A. Roth, Haiyang Zhu
  • Patent number: 11524284
    Abstract: An exhaust gas purification device has a metal substrate and a catalyst layer on the metal substrate, wherein the metal substrate is a wound body of one or a plurality of metal foils, at least one of the one or a plurality of metal foils is a perforated metal foil having holes, the catalyst layer contains noble metal catalyst particles and a carrier for carrying the noble metal catalyst particles, and more noble metal catalyst particles are present in the catalyst layer on side surfaces of holes, which face an upstream side of an exhaust gas flow, than in the catalyst layer on side surfaces of holes, which face a downstream side of the exhaust gas flow.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: December 13, 2022
    Assignee: CATALER CORPORATION
    Inventors: Kohei Takasaki, Yuji Matsuhisa, Nobuaki Bando, Hiroshi Ono, Tomohito Mizukami, Tsuyoshi Ito
  • Patent number: 11524285
    Abstract: The exhaust gas purification catalyst device includes an upper layer which includes first carrier particles and rhodium, and a lower layer which includes second carrier particles, and the upper layer includes a rhodium enriched area in the range a, from the upstream end in the exhaust gas flow to 50% of the upper layer length, and a range b from the upper layer top surface to 18 ?m in the depth direction. The rhodium enriched area contains at least 50% and less than 100% of all the rhodium in the upper layer.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: December 13, 2022
    Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shunsuke Oishi, Takaya Ota, Isao Chinzei, Hiromasa Suzuki, Yoshinori Saito, Seiji Nakahigashi
  • Patent number: 11517883
    Abstract: The present invention relates to a process for conveniently preparing a supported cobalt-containing Fischer-Tropsch synthesis catalyst having improved activity and selectivity for C5+ hydrocarbons. In one aspect, the present invention provides a process for preparing a supported cobalt-containing Fischer-Tropsch synthesis catalyst, said process comprising the steps of: (a) impregnating a support material with: i) a cobalt-containing compound and ii) acetic acid, or a manganese salt of acetic acid, in a single impregnation step to form an impregnated support material; and (b) drying and calcining the impregnated support material; wherein the support material impregnated in step (a) has not previously been modified with a source of metal other than cobalt; and wherein when the cobalt-containing compound is cobalt hydroxide, a manganese salt of acetic acid is not used in step (a) of the process.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: December 6, 2022
    Assignee: BP P.L.C.
    Inventors: Manuel Ojeda Pineda, Alexander James Paterson
  • Patent number: 11511458
    Abstract: The present invention provides a method of producing a honeycomb structured body having excellent mechanical strength.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: November 29, 2022
    Assignees: IBIDEN CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinnosuke Goto, Takeru Yoshida, Hiromasa Suzuki, Masaru Kakinohana, Takumi Tojo
  • Patent number: 11511459
    Abstract: The present invention provides a method of producing a honeycomb structured body having excellent mechanical strength.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: November 29, 2022
    Assignees: IBIDEN CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinnosuke Goto, Masaru Kakinohana, Takeru Yoshida, Hiromasa Suzuki, Takumi Tojo
  • Patent number: 11504704
    Abstract: An exhaust gas purification device includes a substrate including an upstream end and a downstream end and having a length Ls; a first containing Pd particles, extending between the upstream end and a first position, and being in contact with the substrate; a second containing Rh particles, extending between the downstream end and a second position, and being in contact with the substrate; and a third catalyst layer containing Rh particles, extending between the upstream end and a third position, and being in contact with at least the first catalyst layer, wherein an average of a Rh particle size distribution is from 1.0 to 2.0 nm, and a standard deviation of the Rh particle size distribution is 0.8 nm or less in each of the second catalyst layer and the third catalyst layer.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: November 22, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Isao Chinzei, Takumi Tojo, Shogo Shirakawa, Sho Hoshino, Minoru Ito, Naoto Fujita
  • Patent number: 11504700
    Abstract: The present invention provides an exhaust gas purification catalyst including an alkaline earth metal supported in a highly dispersed state on a porous carrier. A catalyst layer of the exhaust gas purification catalyst provided by the invention has an alkaline earth metal-supporting region including a porous carrier, a catalyst metal belonging to the platinum group, and a sulfate of at least one type of alkali earth metal supported on the porous carrier. In a cross-section of this region, a Pearson correlation coefficient RAe/M is at least 0.5 as calculated using ? and ? for each pixel obtained by carrying out area analysis by FE-EPMA under conditions of pixel size of 0.34 ?m×0.34 ?m, and measured pixel number 256×256, and by measuring the characteristic X-ray intensity (?:cps) of the alkaline earth metal element (Ae) and the characteristic X-ray intensity (?:cps) of the main constituent element of the inorganic compound constituting the porous carrier for each pixel.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: November 22, 2022
    Assignee: Cataler Corporation
    Inventors: Shunsuke Oishi, Shogo Kawamura, Takahiro Nagata, Hirotaka Ori, Minoru Itou
  • Patent number: 11491476
    Abstract: The present invention provides a regeneration method and a regeneration device of a poisoning honeycomb catalyst, and belongs to the field of catalyst regeneration. The regeneration method of the poisoning honeycomb catalyst provided by the present invention includes the following steps: carrying out microwave heating treatment on the poisoning honeycomb catalyst, and then spraying liquid nitrogen into cells of the poisoning honeycomb catalyst so that the poisoning honeycomb catalyst is regenerated. The regeneration method provided by the present invention is simple, and the efficiency of the regenerated catalyst can be increased by 90% more than the original efficiency. According to the regeneration device of a poisoning honeycomb catalyst provided by the present invention, the catalyst regeneration is carried out by using the regeneration device provided by the present invention, the regeneration operation is simple, and the catalytic efficiency of the regenerated catalyst is improved.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: November 8, 2022
    Assignee: HEBEI UNIVERSITY OF TECHNOLOGY
    Inventor: Boxiong Shen
  • Patent number: 11491469
    Abstract: A high surface area to mass catalyst is formed by a method that includes a Kirigami mapped cutting of a flat three metal laminate composite formed on a deposition support. Kirigami derived catalyst has a shape that provides a high surface to mass ratio and promotes the flow of a fluid containing a reagent for a reaction catalyzed by the exterior metal catalyst films of the three metal laminate composite. Structural integrity of the Kirigami derived catalyst results from a support metal film residing between two metal catalyst films. The shaping to the Kirigami derived structure involves cutting the flat three metal laminate composite to that of a Kirigami map, imposing stress on the cut structure to force a non-planar deformation, and delaminating the Kirigami derived catalyst from the deposition support.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: November 8, 2022
    Assignee: Toyota Research Institute, Inc.
    Inventors: Abraham S. Anapolsky, Joseph Harold Montoya