Abstract: A perforated metallic base material for purging exhaust is obtained by laminating a wavy foil having pores and a flat foil having pores and forming the same into a cylindrical shape, wherein the wavy foil and/or the flat foil has axially perforated portions having pores throughout the axial direction of the cylindrical shape and axially non-perforated portions not having pores overall in the axial direction of the cylindrical form.
Abstract: A four-way conversion catalyst for the treatment of an exhaust gas stream of a gasoline engine, the catalyst comprising a porous wall flow filter substrate comprising an inlet end, an outlet end, a substrate axial length extending between the inlet end and the outlet end, and a plurality of passages defined by porous internal walls of the porous wall flow filter substrate, wherein the plurality of passages comprise inlet passages having an open inlet end and a closed outlet end, and outlet passages having a closed inlet end and an open outlet end; wherein in the pores of the porous internal walls and on the surface of the porous internal walls, which surface defines the interface between the porous internal walls and the passages, the catalyst comprises a three-way conversion catalytic coating comprising an oxygen storage compound and a platinum group metal supported on a refractory metal oxide; wherein in the pores of the porous internal walls, the three-way conversion catalytic coating is present as in-wall
Type:
Grant
Filed:
February 4, 2019
Date of Patent:
May 28, 2024
Assignee:
BASF Corporation
Inventors:
Florian Waltz, Attilio Siani, Thomas Schmitz, Stephan Siemund, David Schlereth, Hao Li
Abstract: A three-way catalyst article, and its use in an exhaust system for internal combustion engines, is disclosed. The catalyst article for treating exhaust gas comprising: a substrate comprising an inlet end and an outlet end with an axial length L; and a first catalytic region on the substrate; wherein the first catalytic region comprises a first PGM component and a first alumina, wherein the first alumina is doped with a first dopant of at least 5 wt. %, and wherein the first dopant is selected from the group consisting of Zr, Ta, Mo, W, Ti, Nb, and a combination thereof.
Abstract: The present invention relates to a method for the treatment of an exhaust gas comprising carbon monoxide (CO) and/or one or more volatile organic compounds (VOCs) using a PGM-free catalyst article comprising a mixed oxide of Mn, Cu, Mg, Al and La. The present invention also relates to an HVAC system comprising a PGM-free catalyst article.
Type:
Grant
Filed:
August 16, 2022
Date of Patent:
May 14, 2024
Assignee:
JOHNSON MATTHEY PUBLIC LIMITED COMPANY
Inventors:
Silvia Alcove Clave, Kevin Doura, Joseph Fedeyko
Abstract: A method of forming TiO2—ZnO nanoparticles coated by a copper (II) complex includes forming a mononuclear copper complex by treating a ligand with Cu2+ ions; and immobilizing the mononuclear copper complex on TiO2—ZnO nanoparticles to obtain the TiO2—ZnO nanoparticle coated by the copper (II) complex. The TiO2—ZnO nanoparticles coated by a copper (II) complex thus produced have improved catalytic effectiveness and increased efficiency by reducing catalytic reaction time and temperature, particularly in methods of catalyzing oxidation of an alcohol or of catalyzing decarboxylative bromination of an acid.
Type:
Grant
Filed:
July 5, 2023
Date of Patent:
May 14, 2024
Assignee:
KING FAISAL UNIVERSITY
Inventors:
Mohamed Shaker Sayed Adam, Amel Musa Taha, Mohamed M. Makhlouf
Abstract: An oxidation catalyst composite for abatement of exhaust gas emissions from a lean burn engine is provided, the catalyst composite including a carrier substrate having a length, an inlet end and an outlet end, and an oxidation catalyst material coated on the carrier substrate. The oxidation catalyst material can include a first layer and a second layer. The first layer can include a first oxygen storage component that includes ceria and is impregnated with a palladium (Pd) component and a second component including one or more of magnesium (Mg), rhodium (Rh), and platinum (Pt). The second layer can include a refractory metal oxide component impregnated with platinum (Pt) and palladium (Pd), wherein the ratio of Pt to Pd is in the range of about 0:10 to about 10:0.
Type:
Grant
Filed:
January 6, 2022
Date of Patent:
May 14, 2024
Inventors:
Shiang Sung, Patrick William McCanty, Markus Koegel, Susanne Stiebels
Abstract: The present invention relates to a catalyst article for the exhaust system of a natural gas engine with improved sulphur and/or water tolerance. The catalyst article comprises a doped palladium-on-alumina catalyst, wherein the palladium-on-alumina catalyst is doped with manganese and/or zinc. The invention further relates to an exhaust gas treatment system, a natural gas combustion engine and to a method for the treatment of an exhaust gas from a natural gas combustion engine.
Abstract: This invention relates to an aqueous dispersion of particles, the dispersion having a particle content of 10-70 wt %, and the particles comprising, on an oxide basis: (a) 10-98 wt % in total of ZrO2+HfO2, and (b) 2-90 wt % in total of Al2O3, CeO2, La2O3, Nd2O3, Pr6O11, Y2O3, or a transition metal oxide, wherein the dispersion has a Z-average particle size of 100-350 nm and the particles have a crystallite size of 1-9 nm. The invention also relates to a substrate coated with the aqueous dispersion of particles.
Type:
Grant
Filed:
December 2, 2019
Date of Patent:
May 14, 2024
Assignee:
Magnesium Elektron Limited
Inventors:
David Alastair Scapens, Deborah Jayne Harris
Abstract: Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous support structures using atomic layer deposition techniques.
Type:
Grant
Filed:
August 19, 2022
Date of Patent:
May 7, 2024
Assignee:
The Regents of the University of Colorado, a body corporate
Abstract: A catalyst for direct decomposition removal of NOx from an exhaust gas stream to N2 and O2, the catalyst comprising a dual dispersed supported metal oxide material, which comprises MOx-CuOx dispersed on a CO3O4 spinel oxide support, wherein M is selected from the group consisting of Zn, Ce, Mg, Tb, and Gd. The dual dispersed supported metal oxide catalysts have good activity and selectivity for N2.
Type:
Grant
Filed:
January 21, 2022
Date of Patent:
April 30, 2024
Assignee:
Toyota Motor Engineering & Manufacturing North America, Inc.
Inventors:
Torin C. Peck, Benjamin A. Grayson, Charles A. Roberts
Abstract: A catalyst for purification of exhaust gas in which Pd-based nanoparticles and ceria nanoparticles are supported on a composite metal oxide support containing alumina, ceria, and zirconia, wherein a molar ratio (Ce/Pd) of Ce and Pd supported on the support is 1 to 8, a proximity ? between Pd and Ce is 0.15 to 0.50, wherein the proximity ? is determined, based on Pd and Ce distribution maps in an element mapping image of energy dispersive X-ray analysis, by the following formula (1): ? = ? j = 0 N - 1 ? ? i = 0 M - 1 ? ( ( I ? ( i , j ) - I ave ) ? ( T ? ( i , j ) - T ave ) ) ? j = 0 N - 1 ? ? i = 0 M - 1 ? ( I ? ( i , j ) - I ave ) 2 - ? j = 0 N - 1 ? ? i = 0 M - 1 ? ( T ? ( i , j ) - T ave ) 2 , ( 1 ) a Pd dispersity after a heat-resistance test at 1050° C. for 25 hours is 0.8% or more.
Abstract: A method of forming TiO2—ZnO nanoparticles coated by a copper (II) complex includes forming a mononuclear copper complex by treating a ligand with Cu2+ ions; and immobilizing the mononuclear copper complex on TiO2—ZnO nanoparticles to obtain the TiO2—ZnO nanoparticle coated by the copper (II) complex. The TiO2—ZnO nanoparticles coated by a copper (II) complex thus produced have improved catalytic effectiveness and increased efficiency by reducing catalytic reaction time and temperature, particularly in methods of catalyzing oxidation of an alcohol or of catalyzing decarboxylative bromination of an acid.
Type:
Grant
Filed:
February 16, 2023
Date of Patent:
April 30, 2024
Assignee:
KING FAISAL UNIVERSITY
Inventors:
Mohamed Shaker Sayed Adam, Amel Musa Taha, Mohamed M. Makhlouf
Abstract: A method of forming TiO2—ZnO nanoparticles coated by a copper (II) complex includes forming a mononuclear copper complex by treating a ligand with Cu2+ ions; and immobilizing the mononuclear copper complex on TiO2—ZnO nanoparticles to obtain the TiO2—ZnO nanoparticle coated by the copper (II) complex. The TiO2—ZnO nanoparticles coated by a copper (II) complex thus produced have improved catalytic effectiveness and increased efficiency by reducing catalytic reaction time and temperature, particularly in methods of catalyzing oxidation of an alcohol or of catalyzing decarboxylative bromination of an acid.
Type:
Grant
Filed:
July 5, 2023
Date of Patent:
April 23, 2024
Assignee:
KING FAISAL UNIVERSITY
Inventors:
Mohamed Shaker Sayed Adam, Amel Musa Taha, Mohamed M. Makhlouf
Abstract: Disclosed are a mixed oxide composition based on zirconium and cerium exhibiting a high reducibility, the process for preparing it and its use in the field of catalysis.
Type:
Grant
Filed:
September 23, 2019
Date of Patent:
April 23, 2024
Assignee:
RHODIA OPERATIONS
Inventors:
Simon Ifrah, Laure Jeanne Simone Bisson, Benjamin Faure, Rui Miguel Jorge Coelho Marques, Wei Li, Ling Zhu
Abstract: Fluid purification systems employing a monolithic composite photocatalyst to remove volatile organic compounds (VOCs) and/or pathogenic organisms are disclosed. Pairing of systems tuned to abate each of these materials are discussed in different configurations such as series and parallel, as well as combining systems to target both materials simultaneously. System configurations that allow a portion of the fluid stream to be purified are also disclosed as are configurations that allow regeneration of the photocatalyst. These features may be augmented by sensors that allow closed loop control of bypass and regeneration cycles in the systems.
Type:
Grant
Filed:
January 19, 2022
Date of Patent:
April 16, 2024
Assignee:
Sonata Scientific LLC
Inventors:
Jeffrey F. Roeder, Trevor E. James, Melissa A. Petruska, Peter C. Van Buskirk, Robert T. Henderson, III
Abstract: The present invention relates to a four-way conversion catalyst for the treatment of an exhaust gas stream of a gasoline engine, the catalyst comprising a porous wall-flow filter substrate comprising an inlet end, an outlet end, a substrate axial length extending between the inlet end and the outlet end, and a plurality of passages defined by porous internal walls of the porous wallflow filter substrate, wherein the plurality of passages comprise inlet passages having an open inlet end and a closed outlet end, and outlet passages having a closed inlet end and an open outlet end, wherein the interface between the passages and the porous internal walls is defined by the surface of the internal walls; wherein the porous internal walls comprise pores which comprise an oxidic component comprising a first refractory metal oxide, said first refractory metal oxide comprising aluminum, said oxidic component having a platinum group metal content in the range of from 0 to 0.
Type:
Grant
Filed:
August 30, 2019
Date of Patent:
April 2, 2024
Assignee:
BASF Corporation
Inventors:
David Schlereth, Hao Li, Stephen Siemund, Thomas Schmitz, Attilio Siani, Florian Waltz
Abstract: The present invention relates to a method of improving the corrosion resistance of a metal substrate surface using an oxygen reduction catalyst, which may improve the corrosion resistance of the metal substrate surface by coating the metal substrate surface with the oxygen reduction catalyst so that the metal substrate surface is changed to a passive state through the action of the oxygen reduction catalyst in an environment in which a stable oxide layer is not spontaneously formed on the metal substrate surface. The present invention has an advantage in that it can dramatically improve the corrosion resistance of the metal substrate under a corrosive environment by allowing a recoverable oxide layer to be formed on the metal substrate surface through the action of the oxygen reduction catalyst, applied to the surface, even in an environment in which an oxide layer is not spontaneously formed on the metal substrate.
Type:
Grant
Filed:
March 7, 2022
Date of Patent:
March 12, 2024
Assignee:
POSTECH RESEARCH AND BUSINESS DEVELOPMENT FOUNDATION
Inventors:
Yong-Tae Kim, Jaeik Kwak, Hyoung Seop Kim, Sujung Son, Sang-Mun Jung
Abstract: There is provided an exhaust gas purifying catalyst including a substrate and catalyst portions. The substrate includes an inflow-side cells, outflow-side cells, and porous partition walls, each partition wall separating the inflow-side cell from the outflow-side cell. The catalyst portion includes: (group A) first catalyst portions, each first catalyst portion being provided on a surface of the partition wall that faces the inflow-side cell on an upstream side in an exhaust gas flow direction; and (group B) second catalyst portions being provided on a surface of the partition wall that faces the outflow-side cell on a downstream side in the exhaust gas flow direction. Each catalyst portion of one of group A and group B includes at least one oxidizing catalyst layer and at least one reducing catalyst layer, and each catalyst portion of the other of group A and group B includes at least one oxidizing catalyst layer and/or at least one reducing catalyst layer.
Abstract: Methods for limiting bleed-through of aqueous catalyst solutions in ceramic articles are described herein. The methods include applying a hydrophobic cellulose derivative, such as ethylcellulose, to an exterior surface of a fired porous ceramic article. The aqueous catalyst solution is applied to the fired porous ceramic article, such that the hydrophobic cellulose derivative limits bleed-through of the aqueous catalyst solution through at least a portion of the ceramic article. Ceramic articles with skins that limit bleed-through of aqueous catalyst solutions are also described herein.
Abstract: Honeycomb bodies and methods for treating a honeycomb bodies that include a skin surrounding a matrix of cells, the skin and the matrix of cells comprising a porous inorganic material. Methods include applying a buffer solution to only the porous inorganic material of the skin and coating the porous inorganic material of the skin with an oxide slurry. The oxide slurry includes an oxide or a precursor of the oxide configured to increase the isostatic strength of the honeycomb body. After treatment, the honeycomb body may be dried.
Type:
Grant
Filed:
September 11, 2020
Date of Patent:
February 6, 2024
Assignee:
Corning Incorporated
Inventors:
Jacob George, Mallanagouda Dyamanagouda Patil, Elizabeth Margaret Wheeler