Patents Examined by Candace R Chouinard
  • Patent number: 9006508
    Abstract: A method of removing mercury and/or sulfur from a fluid stream comprising contacting the fluid stream with a sorbent comprising a core and a porous shell formed to include a plurality of pores extending therethrough and communicating with the core. The core comprises a copper compound selected from the group consisting of a basic copper oxysalt, a copper oxide, and a copper sulfide.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: April 14, 2015
    Assignee: UOP LLC
    Inventors: Vladislav Ivanov Kanazirev, Dante A. Simonetti, Peter Rumfola, III
  • Patent number: 8841500
    Abstract: Provided is a process for preparing alkyl aromatic compounds. The process comprises contacting an alkane under dehydrogenation conditions in the presence of a dehydrogenation catalyst, e.g., a pincer iridium catalyst, to form olefins, and then contacting the olefins generated with an aromatic compound under alkylation conditions. Both reactions are conducted in a single reactor, and occur simultaneously.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 23, 2014
    Assignees: Chevron U.S.A. Inc., Rutgers, The State University of New Jersey
    Inventors: Alan Stuart Goldman, Long Van Dinh, William L. Schinski
  • Patent number: 8802909
    Abstract: A method for improving productivity and process stability in styrene monomer manufacturing system using a reaction system having multiple reactors connected in series, which can prevent destruction of the embedded catalyst and bending of a screen which supports catalyst and achieve homogeneous catalyst inactivation during the reaction by divergence of some portions of the feed containing steam and ethylbenzene and injection thereof into a certain point of the system.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 12, 2014
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Jong-Kuk Won, Hee-Heon Jang
  • Patent number: 8796499
    Abstract: A process for producing light olefins from methanol and/or dimethyl ether is disclosed. It comprises: (a) introducing a feed comprising methanol and/or dimethyl ether into a fluidized-bed reactor from its bottom, and contacting the feed in a dense phase zone and a transition zone of the fluidized-bed reactor with a catalyst, to form an effluent I comprising unreacted feed, reaction products and entrained solid particulate catalyst; (b) introducing a terminating agent consisting of water, alcohol, ether, hydrocarbons, and aromatic at upper portion of the transition zone and/or lower portion of a gas-solid separating zone of the fluidized-bed reactor into the effluent I, to give an effluent II; and (c) passing the effluent II into the gas-solid separating zone in upper portion of the fluidized-bed reactor, where gas-solid separation is accomplished to give a gaseous product stream and solid catalyst.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: August 5, 2014
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Juntao Liu, Siqing Zhong, Huiming Zhang
  • Patent number: 8785711
    Abstract: There are provided an ionic liquid having ether group(s) in which a copper(I) compound is included, a method for preparing the same, and a method for removing traces amounts of acetylene-based hydrocarbon compounds included in olefin by absorption or extraction using the same. When the disclosed solution is used, oxidation of Cu(I) to Cu(II) is prevented since CuX is stabilized by the ionic liquid. Thus, selective removal efficiency of acetylenic compounds is improved greatly while the removal performance is retained for a long period of time. Further, since the solution according to the present disclosure is applicable as an extractant as well as an absorbent, the associated operation is simple and apparatus cost can be decreased.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 22, 2014
    Assignee: Kolon Industries, Inc.
    Inventors: Hyun Joo Lee, Byoung Sung Ahn, Hoon Sik Kim, Jin-Hyung Kim, Gyeong Taek Gong
  • Patent number: 8785710
    Abstract: A method for purifying a paraffin from a source material containing a paraffin having 2 to 6 carbon atoms and an olefin having 2 to 6 carbon atoms includes a first step of bringing the source material into contact with a silver ion-containing solution (absorption liquid) at a predetermined temperature and pressure in an absorption column 1 and recovering a non-absorbed gas not absorbed by the absorption liquid while the olefin in the source material is preferentially absorbed by the absorption liquid, and a second step of desorbing and discharging a gas component from the absorption liquid having undergone the first step at a predetermined temperature and pressure in a desorption column 2. The first step and the second step are performed continuously in parallel while the absorption liquid is circulated between the first step and the second step.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 22, 2014
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Hiroaki Nago, Shinichi Tai, Junichi Kawakami, Hiroyuki Hata, Shigeru Morimoto
  • Patent number: 8754276
    Abstract: A reverse flow regenerative reactor having first and second zones, each having first and second ends, the first zone having a plurality of channels capable of separately conveying at least two components of a combustible gas mixture, a gas distributor configured for injecting the components of the combustible gas mixture into first zone, a combustion zone including a selective combustion catalyst disposed at or downstream of the second end of said channels for catalyzing combustion, wherein the second zone is positioned and situated to receive a combusted gas mixture. Processes usefully conducted in the reactor are also disclosed.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: June 17, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John Scott Buchanan, Stephen Mark Davis, Frank Hershkowitz, John Slocum Coleman, Seth McConkie Washburn
  • Patent number: 8716544
    Abstract: One exemplary embodiment can be a process for isomerizing a feed stream including one or more C4-C6 hydrocarbons. Generally, the process includes contacting the feed stream in an isomerization reaction zone with an isomerization catalyst at isomerization conditions to produce an isomerization zone effluent; passing at least a portion of the isomerization zone effluent to a stabilizer zone and recovering a stabilizer overhead stream, a bottom stream, and a side-stream; passing at least a portion of the side-stream to a stripper zone; and sending a stripper bottom stream to a C5 splitter zone and passing a stream from the C5 splitter zone to the isomerization reaction zone. Generally, the stabilizer overhead stream can include one or more C5? hydrocarbons, a bottom stream can include at least about 85%, by weight, one or more C6+ hydrocarbons, and a side-stream can include at least about 85%, by weight, one or more C5+ hydrocarbons.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: May 6, 2014
    Assignee: UOP LLC
    Inventor: David James Shecterle
  • Patent number: 8697929
    Abstract: The invention concerns a xylenes isomerization process for the production of equilibrium or near-equilibrium xylenes. The process utilizes a catalyst comprising HZSM-5 or MCM-49 and process conditions including a temperature of less than 295° C. and a pressure sufficient to maintain the xylenes in liquid phase. In embodiments, the process can be operated in a continuous mode with ppm levels of dissolved H2 in the feed and in other embodiments in a cyclic mode without the H2 in feed but with periodic regenerations using a feed having low ppm levels of H2.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: April 15, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Di-Yi Ou, April D. Ross, Doron Levin, Mohan Kalyanaraman, Wenyih Frank Lai
  • Patent number: 8692046
    Abstract: One exemplary embodiment can be a process for isomerizing a feed stream including one or more C4-C6 hydrocarbons. The process may include contacting the feed stream in an isomerization reaction zone with an isomerization catalyst at isomerization conditions to produce an isomerization zone effluent; passing at least a portion of the isomerization zone effluent to a stabilizer zone and recovering a stabilizer overhead stream, a bottom stream, and a stripper feed stream; passing the stripper feed stream to a stripping zone and separating the stripper feed stream into a stripper overhead stream and a stripper bottom stream; and recycling at least a portion of the stripper bottom stream to a deisopentanizer zone and passing a stream from the deisopentanizer zone to the isomerization reaction zone.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 8, 2014
    Assignee: UOP LLC
    Inventor: David James Shecterle
  • Patent number: 8658849
    Abstract: The present invention relates to a process for the separation of at least one unbranched C4-C2O hydrocarbon from a fluid mixture containing the unbranched hydrocarbon and at least one branched isomer of the unbranched hydrocarbon, which comprises the step of—contacting the fluid mixture with an adsorbent comprising a porous metal organic framework material, which material comprises at least one at least bidentate organic compound coordinately bound to at least one metal ion, to get the unbranched hydrocarbon adsorbed, wherein the at least one at least bidentate organic compound is a monocyclic, bicyclic or polycyclic ring system which is derived from at least one heterocycle selected from the group consisting of pyrrole, alpha-pyridone and gamma-pyridone and has at least two ring nitrogens and is unsubstituted or bears one or more substituents selected independently from the group consisting of halogen, Ci-6-alkyl, phenyl, NH2, NH(d-6-alkyl), N(C1-6-alkyl)2, OH, Ophenyl and OCi-6-alkyl, where the substituents
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: February 25, 2014
    Assignee: BASF SE
    Inventors: Markus Schubert, Ulrich Mueller, Christoph Kiener, Ingo Richter, William Dolan, Frank Poplow
  • Patent number: 8586815
    Abstract: The present invention relates to a process for removing at least one component selected from the group consisting of oxygen, nitrogen oxides, acetylenes and dienes from a gas mixture comprising the at least one component and also hydrogen, one or more olefins which are not dienes and possibly further gas constituents, in which the gas mixture is brought into contact with a catalyst in a reaction zone, wherein the catalyst comprises copper(I) sulfide.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: November 19, 2013
    Assignee: BASF SE
    Inventors: Peter Rudolf, Michael Bender, Michael Koch
  • Patent number: 8552246
    Abstract: ETS-10 titanosilicate materials selectively adsorb carbon dioxide from gaseous mixtures containing carbon dioxide and light paraffins such as methane and ethane.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: October 8, 2013
    Assignee: The Governors of the University of Alberta
    Inventors: Steven M. Kuznicki, Alejandro Anson, Christopher C. H. Lin, Patricio S. Herrera
  • Patent number: 8415519
    Abstract: The invention involves a process for converting an oxygenate-containing feed into an olefin-containing product comprising: (a) providing a co-catalyst oxide of a metal from Groups 2-4 of the Periodic Table of Elements, Lanthanides, Actinides, and combinations thereof, (b) contacting the metal oxide with nitromethane under conditions sufficient for the nitromethane to adsorb onto the metal oxide; (c) analyzing the nitromethane-adsorbed metal oxide using NMR to determine a basic site density of the metal oxide; (d) providing a catalyst system comprising a primary catalyst comprising aluminosilicates, aluminophosphates, silicoaluminophosphates, and metal-containing derivatives and combinations thereof, and the co-catalyst metal oxide whose basic site density is ?0.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Sebastien P. B. Kremer, Teng Xu
  • Patent number: 8373014
    Abstract: Systems and processes for the alkylation of a hydrocarbon are provided that utilize a plurality of moving bed radial flow reactors. An olefin injection point can be provided prior to each reactor by providing a mixer that mixes olefin with a hydrocarbon feed, or with the effluent stream from an upstream reactor, to produce a reactor feed stream. Catalyst can be provided from the reaction zone of one reactor to the reaction zone of a downstream reactor through catalyst transfer pipes, and can be regenerated after passing through the reaction zones of the reactors. The moving bed radial flow reactors can be stacked in one or more reactor stacks.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: February 12, 2013
    Assignee: UOP LLC
    Inventors: Clayton C. Sadler, Mary Jo Wier, Laurence O. Stine, Christopher Naunheimer
  • Patent number: 8350109
    Abstract: A process for dehydrogenation of alkylaromatic hydrocarbon, including: contacting a reactant vapor stream, comprising an alkylaromatic hydrocarbon and steam and having a first steam to alkylaromatic hydrocarbon ratio, with a dehydrogenation catalyst to form a vapor phase effluent comprising a product hydrocarbon, the steam, and unreacted alkylaromatic hydrocarbon; feeding at least a portion of the effluent to a splitter to separate the product hydrocarbon from the unreacted alkylaromatic hydrocarbon; recovered from the splitter as bottoms and overheads fractions, respectively; recovering heat from a first portion of said overheads fraction by indirect heat exchange with a mixture comprising alkylaromatic hydrocarbon and water to at least partially condense said portion and to form an azeotropic vaporization product comprising alkylaromatic vapor and steam having a second steam to alkylaromatic hydrocarbon ratio; and combining the azeotropic vaporization product with additional alkylaromatic hydrocarbon and ad
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: January 8, 2013
    Assignee: Lummus Technology Inc.
    Inventors: Ajaykumar Chandravadan Gami, Sanjeev Ram