Patents Examined by Carol M Koslow
  • Patent number: 9567519
    Abstract: The present invention relates to a composite ceramic which comprises a conversion phosphor and a further material, characterized in that the further material has a negative coefficient of thermal expansion, and to a process for the preparation thereof. Furthermore, the present invention also relates to the use of the composite ceramic according to the invention as emission-converting material, preferably in a white light source, and to a light source, a lighting unit and a display device.
    Type: Grant
    Filed: March 2, 2013
    Date of Patent: February 14, 2017
    Assignee: Merck Patent GmbH
    Inventors: Holger Winkler, Thomas Juestel, Julian Plewa
  • Patent number: 9570217
    Abstract: A process for preparing a magnetic talcous composition including mineral particles, referred to as magnetic talcous particles, having a non-zero magnetic susceptibility, in which, during an oxidative contacting step, talcous particles chosen from the group formed from 2:1 lamellar silicates having a zero electric charge are brought into contact with particles including at least one magnetic iron oxide chosen from the group formed from magnetite and maghemite, the magnetic particles having a mean equivalent diameter of between 1 nm and 50 nm. A magnetic talcous composition including mineral particles, referred to as magnetic talcous particles, having a non-zero magnetic susceptibility, at least 20% by weight of talcous particles and at least 0.5% by weight of magnetic particles is also described.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 14, 2017
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.), UNIVERSITE PAUL SABATIER TOULOUSE III
    Inventors: Francois Martin, Pierre Micoud, Angela Dumas, Christophe Le Roux, Emmanuel Gardes
  • Patent number: 9567518
    Abstract: Disclosed herein are emissive ceramic elements having low amounts of certain trace elements. Applicants have surprisingly found that a lower internal quantum efficiency (IQE) may be attributed to specific trace elements that, even at very low amounts (e.g., 50 ppm or less), can cause significant deleterious effects on IQE. In some embodiments, the emissive ceramic element includes a garnet host material and an amount of Ce dopant. The emissive ceramic element may, in some embodiments, have an amount of Na in the composition less than about 67 ppm, an amount of Mg in the composition less than about 23 ppm, or an amount of Fe in the composition less than about 21 ppm.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: February 14, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Hiroaki Miyagawa, Bin Zhang, James Chienchung Shih
  • Patent number: 9554881
    Abstract: A coloring solution for dental zirconia ceramics and a method for using the same are provided. The coloring solution consists of coloring agents, a solvent, and an additive. The coloring agents are a combination of two or more rare earth metal compounds, wherein the rare earth metal compounds having rare earth metal ions selected from the group consisting of praseodymium (Pr) ions, erbium (Er) ions, cerium (Ce) ions, and neodymium (Nd) ions. The concentration of the rare earth metal ions in the solution is 0.05˜3 mol/liter solvent. The molar ratio of Pr ions:Er ions:Ce ions:Nd ions in the solution is 1:(10˜50):(0˜20):(0˜30).
    Type: Grant
    Filed: April 28, 2013
    Date of Patent: January 31, 2017
    Assignee: SHENZHEN UPCERA DENTAL TECHNOLOGY CO., LTD.
    Inventors: Hongjuan Wang, Qingyun Yan, Dongbin Huang, Lingling He, Yanchun Zheng
  • Patent number: 9552910
    Abstract: A ferrite magnet with salt includes 40 to 99.9 weight % of ferrite and 0.1 to 60 weight % of salt, wherein the salt has a melting point lower than a synthetic temperature of the ferrite, and the salt is melted to form a matrix between the ferrite particles, and a manufacturing thereof. The ferrite magnet with salt has advantages in terms of process conditions due to fast synthesis reaction at low temperatures compared to typical magnets, easily obtaining nano-sized particles having high crystallinity, preventing cohesion between particles and particle growth by molten salt, allowing sintering at temperatures lower than typical during the molding and sintering processes for producing a ferrite magnet with salt due to synthesized ferrite magnetic powder with salt thus preventing the deterioration of magnetic characteristics due to particle growth, and allowing alignment in the direction of magnetization easy axis to obtain higher magnetic characteristics.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: January 24, 2017
    Assignees: LG ELECTRONICS INC., INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY ERICA CAMPUS
    Inventors: Namseok Kang, Jinbae Kim, Yongho Choa, Jongyoul Kim, Gukhwan An, Sanggeun Cho
  • Patent number: 9550939
    Abstract: [Problem to be Solved] Provided is a red emitting fluorescent material, which has a large excitation band and which is capable of efficiently emitting red fluorescence when excited by light emitted from an ultraviolet light emitting device and a blue light emitting device serving as an excitation source, in particular, even by use of an ultraviolet LED having an emission peak at near 390 nm to 400 nm, and which is capable of emitting red fluorescence when excited not only by ultraviolet and blue light from an ultraviolet light emitting device and a blue light emitting device but also by fluorescence emitted from a fluorescent material upon receipt these light beams, thereby emitting high brightness red light, and then, provided is a white light emitting device capable of emitting white light having excellent color reproducing and rendering properties.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: January 24, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Ryo Yoshimatsu
  • Patent number: 9548147
    Abstract: An organically surface-bonded metal or metal oxide material including an inorganic metal or metal oxide and an organic material. The organic material is coated on the surface of the inorganic metal or metal oxide. The inorganic metal or metal oxide and the organic material are linked through a strong chemical bond. The strong chemical bond includes a covalent bond between a metal in the inorganic metal or metal oxide and a nitrogen in the organic material.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: January 17, 2017
    Assignee: Beijing Gignano Biointerface Co. Ltd.
    Inventor: Boliang Guo
  • Patent number: 9546319
    Abstract: The invention provides, amongst others for application in a lighting unit, a phosphor having the formula M1?x?y?zZzAaBbCcDdEeN4?nOn:ESxREy (I), with M=selected from the group consisting of Ca, Sr, and Ba; Z=selected from the group consisting of monovalent Na, K, and Rb; A=selected from the group consisting of divalent Mg, Mn, Zn, and Cd; B=selected from the group consisting of trivalent B, Al and Ga; C=selected from the group consisting of tetravalent Si, Ge, Ti, and Hf; D=selected from the group consisting of monovalent Li, and Cu; E=selected for the group consisting of P, V, Nb, and Ta; ES=selected from the group consisting of divalent Eu, Sm and Yb; RE=selected from the group consisting of trivalent Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; 0?x?0.2; 0?y?0.2; 0<x+y?0.4; 0?z<1; 0?n?0.5; 0?a?4 (such as 2?a?3); 0?b?4; 0?c?4; 0?d?4; 0?e?4; a+b+c+d+e=4; and 2a+3b+4c+d+5e=10?y?n+z.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: January 17, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Josef Schmidt, Frauke Charlotte Hintze, Philipp Alexander Hubert Pust, Volker Weiler, Cora Sieglinde Hecht, Sebastian Florian Schmiechen, Wolfgang Schnick, Detlef Uwe Wiechert
  • Patent number: 9540771
    Abstract: A security feature has a luminescent component and a component camouflaging the luminescent component. A security feature has a luminescent component with at least one luminophore consisting of a doped host lattice, and a component camouflaging the luminescent component, wherein for camouflaging the luminescent component, relevant properties required for identifying the luminescent component are camouflaged by the camouflaging component by the relevant properties of the luminescent component. The relevant properties being camouflaged by the camouflaging component in at least two of the relevant properties by the camouflaging component having relevant properties that correspond to the respective relevant properties of the luminescent component, thereby impeding or preventing a recognition of the luminescent component.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: January 10, 2017
    Assignee: GIESECKE & DEVRIENT GMBH
    Inventors: Thomas Giering, Johann Kecht, Stephan Steinlein
  • Patent number: 9543501
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: January 10, 2017
    Assignees: Canon Kabushiki Kaisha, Kyoto University, Tokyo Institute of Technology, Sophia University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Patent number: 9543480
    Abstract: A ceramic composite for light conversion comprising a solidified body in which crystalline phases of oxides are three-dimensionally entangled and a method for manufacture thereof. A manufacture method of a ceramic composite for light conversion is characterized in that a polishing step is provided in a chemical mechanical polishing (CMP) process applied to the surface of a solidified body with a structure in which an Al2O3 phase and other phases are three-dimensionally entangled.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: January 10, 2017
    Assignee: Ube Industries, Ltd.
    Inventors: Dai Inamori, Takafumi Kawano, Toshiro Doi, Syuhei Kurokawa
  • Patent number: 9536678
    Abstract: Embodiments described herein relate generally to electric double layer capacitors having an electrolyte formulation that includes a quantity of a stabilizing additive such that the electrochemical double layer capacitors retain cell capacitance for longer periods of time, generate less gas during operation, and experience less long term ESR. In some embodiments, an electrolyte formulation includes an ionic species, a solvent, and a stabilizer. In some embodiments the stabilizer contains a moiety that promotes adsorption to a surface, such as a carbon surface, and a moiety that promotes polarity of the stabilizer. In some embodiments, the solvent can be a nitrile compound and the stabilizer can be a compound of the formula I: Such that R is H, saturated or unsaturated, linear or branched, acyclic carbon group, OH, halogen NH2, NO2, S(O)2CF3, or monocyclic or polycyclic aryl, and n is an integer from 0 to 5.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: January 3, 2017
    Assignee: IOXUS, INC.
    Inventors: George Lane, Ken Rudisuela
  • Patent number: 9534169
    Abstract: A method can be used for producing a powdery precursor material of the following general composition I or II or III or IV: I: (CaySr1?y) AlSiN3:X1 II:(CabSraLi1?a?b) AISi (N1?cFc)3:X2 III: Z5??Al4?2?Si8+2?N18: X3 IV: (Zi?dLid)5??Al4?2?Si8+2?(N1?XFX)18: X4. The method includes A) producing a powdery mixture of starting materials, wherein the starting materials comprise ions of the aforementioned compositions I and/or II and/or III and/or IV, B) annealing the mixture under a protective gas atmosphere, subsequent milling. In method step A), at least one silicon nitride having a specific area of greater than or equal to 5 m2/g and smaller than or equal to 100 m2/g is selected as starting material. The annealing in method step B) is carried out at a temperature of less than or equal to 1550° C.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: January 3, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Bianca Pohl-Klein, Juliane Kechele
  • Patent number: 9534171
    Abstract: To provide a phosphor being chemically-thermally stable and having high luminous intensity if combined with LED of not exceeding 470 nm. A phosphor of the present invention includes: inorganic compound including: a crystal represented by Li1Ba2Al1Si7N12; a crystal represented by (Li, A)3(D, E)8X12; and an inorganic crystal having the same crystal structure as the crystal represented by Li1Ba2Al1Si7N12; and a solid-solution crystal thereof, which contains Li, A, D, E, and X elements (A represents at least one selected from Mg, Ca, Sr, Ba, Sc, Y and La; D represents at least one selected from Si, Ge, Sn, Ti, Zr and Hf; E represents at least one selected from B, Al, Ga and In; and X represents at least one selected from O, N and F), wherein M element (M represents at least one selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy and Yb) is solid-solved into each.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: January 3, 2017
    Assignee: National Institute for Materials Science
    Inventors: Naoto Hirosaki, Takashi Takeda, Shiro Funahashi, Eiichirou Narimatsu
  • Patent number: 9536646
    Abstract: A sintered ferrite magnet comprising metal elements of Ca, La, Fe and Co, whose atomic ratios are represented by the general formula of Ca1-xLaxFe2n-yCoy, wherein x and y, and n representing a molar ratio meet 0.3?x?0.6, 0.25?y?0.5, and 3?n?6, and further comprising 0.2% to 0.35% by mass of SiO2.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: January 3, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Yoshinori Kobayashi, Tsunehiro Kawata
  • Patent number: 9534172
    Abstract: A semiconductor nanocrystal capable of emitting blue light upon excitation. Also disclosed are devices, populations of semiconductor nanocrystals, and compositions including a semiconductor nanocrystal capable of emitting blue light upon excitation. In one embodiment, a semiconductor nanocrystal capable of emitting blue light including a maximum peak emission at a wavelength not greater than about 470 nm with a photoluminescence quantum efficiency greater than about 65% upon excitation. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting blue light with a photoluminescence quantum efficiency greater than about 65% upon excitation.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: January 3, 2017
    Assignee: QD VISION, INC.
    Inventors: Craig Breen, Jonathan S. Steckel, Dorai Ramprasad
  • Patent number: 9537083
    Abstract: Provided is a piezoelectric composition containing a major component that is a perovskite-type oxide which is represented by the general formula ABO3, which contains no Pb, and which has A-sites containing Bi, Na, and K and B-sites containing Ti. The Ti is partly substituted with a transition metal element Me that is at least one selected from the group consisting of Mn, Cr, Fe, and Co. The content of Bi and the transition metal element Me in the perovskite-type oxide, which is the major component, is 6 mole percent to 43 mole percent in terms of Biu1MeO3.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: January 3, 2017
    Assignee: TDK CORPORATION
    Inventors: Taku Masai, Masamitsu Haemori, Masahito Furukawa, Junichi Yamazaki, Kouhei Ohhashi
  • Patent number: 9536645
    Abstract: A ferrite composition comprises a main component and a sub component. The main component is comprised of 40.0 to 49.8 mol % iron oxide in terms of Fe2O3, 5.0 to 14.0 mol % copper oxide in terms of CuO, 0 to 32.0 mol % zinc oxide in terms of ZnO, and a remaining part of nickel oxide. The sub component includes 0.5 to 4.0 wt % tin oxide in terms of SnO2, 0.10 to 1.00 wt % bismuth oxide in terms of Bi2O3, and 0.21 to 3.00 wt % cobalt oxide in terms of Co3O4, with respect to the main component.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: January 3, 2017
    Assignee: TDK CORPORATION
    Inventors: Ryuichi Wada, Kouichi Kakuda, Yukari Akita, Yukio Takahashi, Yusuke Nagai, Takashi Suzuki, Takahiro Sato
  • Patent number: 9536674
    Abstract: Provided is an electrolytic solution suitable for use in a 100 WV class electrolytic capacitor having low inductance at low temperatures and high durability in high-temperature use conditions. This electrolytic solution for an electrolytic capacitor contains: a mixed organic solvent including sulfolane and ?-butyrolactone; water; an electrolyte selected from the group consisting of a quaternized pyridinium salt of carboxylic acid and a quaternized imidazolinium salt of carboxylic acid; boric acid; and mannitol; and has a mass ratio of boric acid and mannitol in the range of 1:1.2 to 1:1.6, and a total amount of boric acid and mannitol of 10.0 to 14.5% by mass of the total electrolytic solution, the water content being 1.5 to 2.0% by mass of the total electrolytic solution.
    Type: Grant
    Filed: September 28, 2013
    Date of Patent: January 3, 2017
    Assignee: NIPPON CHEMI-CON CORPORATION
    Inventor: Shingo Takeuchi
  • Patent number: 9527776
    Abstract: Embodiments disclosed herein include methods of modifying synthetic garnets used in RF applications to reduce or eliminate Yttrium or other rare earth metals in the garnets without adversely affecting the magnetic properties of the material. Some embodiments include substituting Bismuth for some of the Yttrium on the dodecahedral sites and introducing one or more high valency ions to the octahedral and tetrahedral sites. Calcium may also be added to the dodecahedral sites for valency compensation induced by the high valency ions, which could effectively displace all or most of the Yttrium (Y) in microwave device garnets. The modified synthetic garnets with substituted Yttrium (Y) can be used in various microwave magnetic devices such as circulators, isolators and resonators.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: December 27, 2016
    Assignee: Skyworks Solutions, Inc.
    Inventors: David Bowie Cruickshank, Michael David Hill