Patents Examined by Catherine S Branch
  • Patent number: 11352455
    Abstract: The present invention is directed to a method of making a functionalized elastomer, comprising the step of polymerizing a conjugated diene monomer in the presence of a lanthanide-based coordination polymerization catalyst activated with a functionalized aluminum reagent of formula 1 where R is a linear or branched alkane group containing 1 to 8 carbon atoms, and R1 is phenylene, or a linear or branched alkane diyl group containing 2 to 10 carbon atoms, or a combination of one or more phenylene groups and one or more linear or branched alkane diyl groups containing 1 to 10 carbon atoms; Q is of formula 2 where R5, R6 and R7 are independently a linear or branched alkyl group containing 1 to 3 carbon atoms or a group of formula 3 where R3 and R4 are independently phenyl or a linear or branched alkyl group containing 1 to 10 carbon atoms, or R3 and R4 taken together with the nitrogen atom represent a nitrogen containing heterocyclic group containing from 4 to 12 carbon atoms; or R5, R6 and R7 taken
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: June 7, 2022
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Seth Cody Ensign, Margaret Flook Vielhaber
  • Patent number: 11332425
    Abstract: The magnesium alkoxide particle contains the reaction product of the following components: 1) a magnesium powder; 2) a mixed alcohol; 3) a halogenating agent; and 4) a titanate compound. The magnesium alkoxide particle is used for preparing a catalyst for olefin polymerization.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: May 17, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Xiudong Xu, Zhong Tan, Qilong Zhou, Rui Zhang, Weiwei Song, Jinhua Yu, Fengkui Li, Shanshan Yin
  • Patent number: 11312795
    Abstract: A catalyst for olefin polymerization containing at least one metal complex comprising at least one —SF5 group attached to a ligand bound to the metal. The invention further relates to catalyst, a process for making polyolefins and dispersions of UHMWPE.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: April 26, 2022
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Nicolaas Hendrika Friederichs, Martin Alexander Zuideveld, Philip Kenyon, Stefan Mecking
  • Patent number: 11299505
    Abstract: Bis-imine titanium complex having general formula (I): wherein: R1 and R2, mutually identical or different, represent a hydrogen atom; or are selected from linear or branched, optionally halogenated, C1-C20 alkyl groups, preferably C1-C15, optionally substituted cycloalkyl groups; R3 and R4, mutually identical or different, represent a hydrogen atom; or are selected from linear or branched, optionally halogenated, C1-C20 alkyl groups, preferably C1-C15, optionally substituted cycloalkyl groups, optionally substituted aryl groups; X1, X2, X3 and X4, mutually identical or different, represent a halogen atom such as chlorine, bromine, iodine; or are selected from linear or branched C1-C20 alkyl groups, preferably C1-C15, —OCOR5 groups or —OR5 groups wherein R5 is selected from linear or branched C1-C20 alkyl groups, preferably C1-C15; or represent an acetylacetonate group (acac); provided that when R1 and R2 represent a methyl group and X1, X2, X3 and X4 represent a chlorine atom, R3 and R4 are different from 2,
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 12, 2022
    Assignee: Versalis S.P.A.
    Inventors: Guido Pampaloni, Giovanni Ricci, Anna Sommazzi, Massimo Guelfi, Giuseppe Leone, Francesco Masi
  • Patent number: 11283023
    Abstract: Disclosed is a polymer blend comprising an organic semiconductor (OSC) polymer blended with an isolating polymer and method for making the same. The OSC polymer includes a diketopyrrolopyrrole fused thiophene polymeric material, and the fused thiophene is beta-substituted. The isolating polymer includes a non-conjugated backbone, and the isolating polymer may be one of polyacrylonitrile, alkyl substituted polyacrylonitrile, polystyrene, polysulfonate, polycarbonate, an elastomer block copolymer, derivatives thereof, copolymers thereof and mixtures thereof. The method includes blending the OSC polymer with an isolating polymer in an organic solvent to create a polymer blend and depositing a thin film of the polymer blend over a substrate. Also disclosed is an organic semiconductor device that includes a thin semiconducting film comprising OSC polymer.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: March 22, 2022
    Assignee: Corning Incorporated
    Inventors: Mingqian He, Yang Li, James Robert Matthews, Karan Mehrotra, Weijun Niu, Arthur Lawrence Wallace
  • Patent number: 11274166
    Abstract: The present disclosure relates to the field of rubbers. The halogenated isobutylene isoprene rubber is prepared by polymerizing isoprene monomer and isobutylene monomer, followed by halogenation using a halogenating agent. This process of the present disclosure is simple, energy efficient and economic.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: March 15, 2022
    Assignee: RELIANCE INDUSTRIES LIMITED
    Inventors: Jayesh Prafullachandra Vora, Rakesh Singh, Romal Ramkrushna Chafle, Padmavathi Garimella, Nitin Pal, Natalia Abramova, Dmitry Khrichenko, Vadim Lishchinskiy
  • Patent number: 11274170
    Abstract: A process including contacting one or more monomers, at least one catalyst system, and at least two condensing agents under polymerizable conditions to produce a polyolefin polymer is provided where the vapor pressure of the condensing agents is ±4 bara of the optimum vapor pressure given by the formula: optimum vapor pressure=614?716*D+2.338*P+3.603*ln(MI), where the optimum vapor pressure has units (bara), D is the polyolefin polymer density with units (g/cc), P is the polymerization condition pressure with units (barg), and MI is the polyolefin polymer melt index with units (g/10 min). The invention also relates to a process where at least three condensing agents are used.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: March 15, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Corrine L. Brandl, Fred D. Ehrman, James R. Lattner
  • Patent number: 11267918
    Abstract: Disclosed herein are methods of controlling polymer properties in polymerization processes that use a chromium-based catalyst. An embodiment discloses a method of producing a polyolefin comprising: contacting a reaction mixture and a reduced chromium oxide catalyst in a gas-phase reactor to produce the polyolefin, wherein the reaction mixture comprises a monomer and a co-monomer; and changing a reaction temperature in the gas-phase reactor by about 1° C. or more whereby a gas molar ratio of the co-monomer to the monomer is changed by about 2% or more and a co-monomer content of the polyolefin at substantially constant density is changed by about 2% or more. Additional methods and compositions are also provided.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: March 8, 2022
    Assignee: Univation Technologies, LLC
    Inventors: Mark G. Goode, Francois Alexandre, Kevin J. Cann, Barbara J. Kopp, William A. Matthews, John H. Moorhouse, Cliff R. Mure
  • Patent number: 11261266
    Abstract: The present invention relates to a process for the polymerization of a polyolefin, preferably polypropylene, in a polymerization reactor by contacting one or more olefins, preferably propylene, with a catalyst system in said reactor while stirring, said catalyst system comprising: * a procatalyst comprising 1) a magnesium-containing support, 2) titanium, 3) a phthalate-free internal electron donor; and 4) optionally an activator; wherein said procatalyst is obtained by the following process: i) contacting a compound R4, MgX42—, with an alkoxy- or aryloxy-containing silane compound to give a first intermediate reaction product, being a solid Mg(OR1)xX12-x, R4 is the same as R1 being a linear, branched or cyclic hydrocarbyl group independently selected from alkyl, alkenyl, aryl, aralkyl, alkoxycarbonyl or alkylaryl groups, and one or more combinations thereof; wherein said hydrocarbyl group may be substituted or unsubstituted, may contain one or more heteroatoms and preferably has between 1 and 20 carbon atoms;
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: March 1, 2022
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventor: Martin Alexander Zuideveld
  • Patent number: 11254758
    Abstract: The present invention relates to a process for preparing a procatalyst for polymerization of olefins, said process comprising contacting a magnesium-containing support with a halogen-containing titanium compound, an internal electron donor being a substituted 1,2-phenylene aromatic diester compound.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: February 22, 2022
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Martin Alexander Zuideveld, Aurora Alexandra Batinas-Geurts, Dafne Lise Steinfort
  • Patent number: 11254763
    Abstract: This invention relates to transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I): where M, L, X, m, n, E, E?, Q, R1, R2, R3, R4, R1?, R2?, R3?, R4?, A1, A1?, are as defined herein, where A1QA1? are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2? via a 3-atom bridge with Q being the central atom of the 3-atom bridge.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: February 22, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Michelle E. Titone, Alex E. Carpenter, Catherine A. Faler, Jo Ann M. Canich
  • Patent number: 11254757
    Abstract: The invention relates to a process for preparing a solid support for a procatalyst suitable for preparing a catalyst composition for olefin polymerization, said process for preparing said solid support comprising reacting a compound R4zMgX42-z with a silane compound Si(OR5)4-n(R6)n in a solvent and mixing the resulting mixture with a mixing device and at a certain mixing speed in order to give a solid support Mg(OR1)xX12-x said solid support obtained having an average particle size of at most 17 ?m, preferably at most 16 or 14 ?m, more preferably at most 12 ?m. The invention further relates to a solid support, a process for preparing a procatalyst and said procatalyst as well as polyolefins obtained using said procatalyst.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: February 22, 2022
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Akhlaq Moman, Inaamul Haq Siddiqui, Sudhakar R. Padmanabhan, Abdulaziz Hamad Al-Humydi
  • Patent number: 11248066
    Abstract: Methods of making spray-dried Ziegler-Natta (pro)catalyst systems containing titanium Ziegler-Natta (pro)catalysts, a hydrophobic silica carrier material, and tetrahydrofuran. The spray-dried Ziegler-Natta (pro)catalyst systems made by the method. Methods of polymerizing olefin (co)monomer(s) with the spray-dried Ziegler-Natta catalyst system to make polyolefin polymers, and the polyolefin polymers made thereby.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: February 15, 2022
    Assignee: Univation Technologies, LLC
    Inventors: Ian M. Munro, Wesley R. Mariott, C. Dale Lester, Nitin Borse, Michael D. Awe, Phuong A. Cao, Jesse C. Beilhart
  • Patent number: 11248070
    Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the Lewis base catalysts (e.g., bis(aryl phenolate) five-membered ring catalysts), can be stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high molecular weights or polymers having low to very molecular weights, and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: February 15, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georgy P. Goryunov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Irene C. Cai, Jo Ann M. Canich
  • Patent number: 11245084
    Abstract: An electroluminescent (EL) device and a method of manufacturing same, and an electronic device. The EL device includes a first electrode, a second electrode, and a functional structural layer disposed between the first electrode and the second electrode. The functional structural layer includes a doping material and a graphene oxide material, and the doping material includes a plurality of conjugated ions.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: February 8, 2022
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Yamin Wang
  • Patent number: 11236189
    Abstract: A solid catalyst component for polymerization of olefins is disclosed which can produce a polymer having low stickiness (tackiness) of polymer particles, excellent flowability, and favorable particle size distribution. The solid catalyst component for polymerization of olefins includes titanium, magnesium, a halogen atom and an internal electron donor, wherein the solid catalyst component has a multimodal pore volume distribution measured by a mercury intrusion method and has one or more peak tops in each of a pore radius range from 0.002 ?m to 1 ?m and a pore radius range from larger than 1 ?m to 30 ?m or smaller, and a ratio represented by pore volume V1 derived from pores in the radius range from 0.002 ?m to 1 ?m/pore volume V2 derived from pores in the radius range from larger than 1 ?m to 30 ?m or smaller is 0.30 to 0.65.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: February 1, 2022
    Assignee: TOHO TITANIUM CO., LTD.
    Inventor: Hidetoshi Umebayashi
  • Patent number: 11236222
    Abstract: Catalyst systems for polymerization of mixtures comprising an olefin include a selectivity control agent comprising at least one silicon-containing compound containing at least one C1-C10 alkoxy group bonded to a silicon atom and an amount of one or more agent compounds. The agent compound comprises C2-C13 mono- or polycarboxylic esters of aliphatic C2-C7 carboxylic acids and inertly substituted derivatives thereof. One or more polymerization catalysts may also be present. A polymerization process includes contacting an olefin or a mixture of the olefin and one or more copolymerizable comonomers under polymerization conditions with the catalyst composition.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 1, 2022
    Assignee: W.R. GRACE & CO.-CONN.
    Inventor: Jan Willem van Egmond
  • Patent number: 11225539
    Abstract: This invention relates to supported catalyst compositions of transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I): where M, L, X, m, n, E, E?, Q, R1, R2, R3, R4, R1?, R2?, R3?, R4?, A1, A1?, A3A2, and A2?A3? are as defined herein, where A1QA1? are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2? via a 3-atom bridge with Q being the central atom of the 3-atom bridge.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: January 18, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Charles J. Harlan, Nikola S. Lambic, John R. Hagadorn, Jo Ann M. Canich
  • Patent number: 11220560
    Abstract: Disclosed are a universal alpha-olefin polymerization industrial catalyst, and an application thereof, specifically an industrial production catalyst which consists of (A) a solid catalyst component, (B) a cocatalyst organoaluminium compound and (C) an external electron donor compound, and is used for various alpha-olefin polymerization or copolymerization processes. The solid catalyst component (A) is prepared from a dibutyl phthalate or diisobutyl phthalate and 9,9-bis(methoxymethyl)fluorene composite internal electron donor. A hydrocarbyl alkoxy silicon, an organic acid ester or a hydrocarbyl alkoxy silicon and organic acid ester composite acts as the external electron donor component (C). The solid catalyst component (A), the cocatalyst organoaluminium compound (B) and the external electron donor compound (C) are used together in industrial devices for various alpha-olefin polymerization or copolymerization processes to produce new grades of poly-alpha-olefins.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: January 11, 2022
    Assignees: YINGKOU XIANGYANG CATALYST CO., LTD., DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Licai Wang, Zhanxian Gao, Limei Yu, Huan Wang, Wei Li, Guotong Zheng, Qingxin Dong
  • Patent number: 11220593
    Abstract: The invention relates to a propylene copolymer composition comprising a propylene-ethylene copolymer, wherein the propylene-ethylene copolymer has a melt flow index in the range of 0.05 to 2.5 dg/min measured according to ISO1133 (2.16 kg/230° C.), wherein the propylene-ethylene copolymer is a unimodal propylene-ethylene copolymer and wherein a pipe prepared from the propylene copolymer composition according to ISO 1167-2 has a run time without failure of at least 2,500 h measured according to ISO1167-1 at a temperature of 95° C. and a hoop stress calculated according to ISO3213 of 4.2 MPa.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: January 11, 2022
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Patrick Elisabeth Luc Voets, Henrica Norberta Alberta Maria Steenbakkers-Menting, Aurora Alexandra Batinas-Geurts, Désirée Marie Louise Seegers