Patents Examined by Catherine Voorhees
  • Patent number: 9370660
    Abstract: Apparatus is configured to drive first action potentials orthodromically in a first direction along a nerve of a subject, and second action potentials orthodromically along the nerve in an opposite direction to the first direction. The apparatus includes: (1) first and second excitation units configured to be placed in a proximity of the nerve of the subject; (2) a blocking unit disposed between the excitation units and placeable in a proximity of the nerve of the subject; and (3) a control unit, configured: (i) to drive the first and second excitation units to apply, respectively, first and second excitatory currents to the nerve of the subject, and (ii) to drive the blocking unit to apply a blocking current to the nerve of the subject that blocks action potentials that propagate from the first and second excitatory units toward the blocking unit. Other embodiments are also described.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: June 21, 2016
    Assignee: RAINBOW MEDICAL LTD.
    Inventor: Yossi Gross
  • Patent number: 9370654
    Abstract: An implantable medical device and associated method deliver a therapy to an autonomic nerve. The therapy delivery includes delivering therapeutic low frequency (LF) electrical stimulation pulses to the autonomic nerve and delivering a high frequency electrical signal to the autonomic nerve during the LF frequency stimulation pulse delivery. The high frequency stimulation signal blocks activation of autonomic nerve fibers innervating a non-targeted tissue during the therapeutic LF stimulation pulse delivery.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: June 21, 2016
    Assignee: Medtronic, Inc.
    Inventors: Avram Scheiner, David E. Euler
  • Patent number: 9364681
    Abstract: An implantable heart therapy device connected to at least one right-ventricular electrode and one left-ventricular electrode that sense and stimulate the heart. The at least one right-ventricular and left-ventricular electrodes are each connected to a tachycardia identification unit, wherein the identification unit identifies ventricular tachycardias, and simultaneously evaluates the heart rate at the right-ventricular and at the left-ventricular electrodes. The implantable heart therapy device includes a right-ventricular stimulation unit that delivers antitachycardia stimulation to the right-ventricular electrode, a left-ventricular stimulation unit that delivers antitachycardia stimulation to the left-ventricular electrode, and a therapy control unit that assigns the stimulation location for the antitachycardia stimulation to the slower ventricle side if a dissimilar tachycardia is present.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: June 14, 2016
    Assignee: BIOTRONIK SE & CO. KG
    Inventors: Thomas Doerr, Andreas Kucher
  • Patent number: 9358399
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 7, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 9351656
    Abstract: An implantable medical device has an impedance processor for determining atrial impedance data reflective of the cardiogenic impedance of an atrium of a heart during diastole and/or systole of heart cycle. Ventricular impedance data reflective of the cardiogenic impedance of a ventricle during diastole and/or systole are also determined. The determined impedance data are processed by a representation processor for estimating a diastolic and/or a systolic atrial impedance representation and a diastolic and/or a systolic ventricular impedance representation. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation and/or stenosis, of at least one heart valve based on the estimated atrial and ventricular impedance representations.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: May 31, 2016
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Karin Jarverud, Andreas Blomqvist
  • Patent number: 9351647
    Abstract: This document discusses, among other things, receiving a user selection of a heart failure symptom, receiving a user selection of an abnormal psychological condition, receiving information about a physiological patient status parameter, and determining a heart failure status using the received information.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: May 31, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Jeffrey E. Stahmann
  • Patent number: 9351655
    Abstract: An implantable lead includes a first lead assembly with a distal tip and a medial end, a medial section with a first end and a second end, and a first intermediate assembly disposed between the first lead assembly and the first end of the medial section. The first lead assembly includes a plurality of external contacts and at least one conductive wire disposed in the first lead assembly. The at least one conductive wire extends from at least one external contact towards the medial end of the first lead assembly. The medial section includes a plurality of conductors extending from the first end to the second end. The first intermediate assembly includes a plurality of conductive elements. At least one of the conductive elements is configured and arranged to electrically couple the at least one conductive wire to at least one of the conductors.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: May 31, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Anne Margaret Pianca, John Michael Barker, Aditya Vasudeo Pandit
  • Patent number: 9345417
    Abstract: An implantable medical device has an impedance processor for determining atrial impedance data reflective of the cardiogenic impedance of an atrium of a heart during diastole and/or systole of heart cycle. Ventricular impedance data reflective of the cardiogenic impedance of a ventricle during diastole and/or systole are also determined. The determined impedance data are processed by a representation processor for estimating a diastolic and/or a systolic atrial impedance representation and a diastolic and/or a systolic ventricular impedance representation. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation and/or stenosis, of at least one heart valve based on the estimated atrial and ventricular impedance representations.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: May 24, 2016
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Karin Jarverud, Andreas Blomqvist
  • Patent number: 9339648
    Abstract: Methods and systems are disclosed for determining the timing of stimulation applied using a medical device. In embodiments, the medical device filters a received signal to obtain a plurality of band-pass filtered signals, each corresponding to one or more stimulation channels. The medical device then determines the envelopes of these band-pass filtered signals. Next, the medical device determines the stimulation timing (i.e., the pulse times) for the corresponding stimulation channel based on the timing of a particular phase (e.g., a peak, a minimum, etc.) of the envelope. A pulse amplitude for the stimulation channel may then be determined, and stimulation applied using the determined amplitude and pulse time.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: May 17, 2016
    Assignee: Cochlear Limited
    Inventor: Zachary Mark Smith
  • Patent number: 9332923
    Abstract: A sensor element comprises a sensor section comprising a sensor unit configured to measure a physiological variable or any other signal in a living body and to generate a sensor signal in response to the variable or other signal, and a bond section comprising contact members configured to electrically connect at least one signal transmitting microcable. The bond section is coated with an electrically insulating material and the sensor unit is left uncoated. The sensor element may further comprise an intermediate section between the sensor section and the bond section. The intermediate section includes electric connection lines configured to connect the contact members to the sensor unit. The intermediate section is also coated with the electrically insulating material.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: May 10, 2016
    Assignee: ST. JUDE MEDICAL COORDINATION CENTER BVBA
    Inventor: Shawn Boye
  • Patent number: 9314634
    Abstract: An exemplary system includes a programmer configured to instruct an implantable device and a qualification module with instructions to call for tests performed by an implantable device configured for delivery of CRT, to receive results from the tests, to analyze the results and to decide, based on the analysis, if the patient qualifies for automatic, implantable device-based optimization of one or more CRT parameters and, only if the patient qualifies for automatic, implantable device-based optimization of one or more CRT parameters, presenting a graphical user interface that comprises a selectable control to enable an algorithm of an implantable device to automatically optimize at least one of the one or more cardiac resynchronization therapy parameters. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: April 19, 2016
    Assignee: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Patent number: 9314610
    Abstract: A reusable component of a hands-free defibrillation electrode, the reusable component having a flexible nonconductive element, and a flexible metallic element supported by the flexible nonconductive element, wherein the flexible metallic element has an exposed surface on one side of the reusable component and the exposed surface is configured to be adhered to a disposable coupling portion, and wherein the reusable component is configured to accept an electrical defibrillation pulse and spread the electrical pulse across the exposed surface area, from which it is delivered to the patient's chest through the disposable coupling portion.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: April 19, 2016
    Assignee: ZOLL Medical Corporation
    Inventors: Pisit Khuon, Michael R. Dupelle
  • Patent number: 9318798
    Abstract: An implantable medical device includes a hermetically sealed housing that contains electronic circuitry. A feedthrough is disposed on an external surface of the housing. An antenna wire is disposed around the external surface of the housing. The antenna wire has one end connected to the feedthrough so that the antenna wire is in electric communication with at least a portion of the electronic circuitry. A heat shrink tube is sealingly disposed about substantially the entire external surface of the antenna wire to prevent fluids from contacting the antenna wire and thereby detuning the antenna wire. An antenna surround is disposed about the tube.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 19, 2016
    Assignee: CODMAN NEURO SCIENCES SARL
    Inventors: Rocco Crivelli, Thierry Pipoz
  • Patent number: 9317729
    Abstract: RFID-based sensors, RFID readers and software sense a changed condition. In one embodiment, an RFID-based sensor includes a base that may be placed at a location where a condition may change. The sensor includes an RFID tag that is coupled to the base. The sensor also includes a detector that can be electrically coupled to the RFID tag. If the condition changes, an electrical property of the detector also changes, impacting an operation of the RFID tag. The impacted operation can be detected by an RFID reader/interrogator so as to provide a notification. An advantage over the prior art is that the condition change can be sensed wirelessly over a domain that can be laborious or hazardous to access otherwise. Moreover, RFID based sensors can be made by modifying common RFID tags.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: April 19, 2016
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Patent number: 9308368
    Abstract: A visual prosthesis must convey luminance information across a range of brightness levels to accurately represent a visual scene. Thus, the brightness of phosphenes produced by individual electrodes should scale appropriately with luminance, and the same luminance should produce equivalently bright phosphenes across the entire electrode array. Given that the function relating current to brightness varies across electrodes, it is necessary to develop a fitting procedure that will permit brightness to be equated across an entire array. A visual prosthesis that generates stimuli by performing a brightness fitting that normalizes brightness across electrodes is described.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 12, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Scott H Greenwald, Matthew J McMahon, Ione Fine
  • Patent number: 9311825
    Abstract: An apparatus for interoperably utilizing multiple biosensor data obtained from a finger of the user. A biometric sensor board is retained in a housing adapted for retaining a finger of the user and maintaining multiple sensors in contact with the skin thereof. Implementations are described for fingertip and ring mounted sensor boards. In one implementation, these sensors can be sensors electrodermal response (EDR), or photoplethysmograph (PPG) signals, or temperature, or acceleration in three axes, and combinations thereof. The biometric sensor board registers and processes the signals from the sensors and communicates them to a mobile device which interoperably utilizes multiple sensor information to determine aspects of user emotional state within an application to generate results which are displayed on the mobile device.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 12, 2016
    Assignee: SENSTREAM, INC.
    Inventors: Hugh S. Lusted, Ben Knapp, Jashojit Roy
  • Patent number: 9302102
    Abstract: An electro-therapeutic stimulator provides an output signal having a first controllable main pulse periodic-exponential signal and a second background pulse periodic-exponential signal. The main pulse signal is controllable, preferably to a digital numerical value of 1 to 500 pulses per second, to a digital, numerical value of duty cycle, and to a digital numerical value of balance. The signal is produced using a class D amplifier and with a transformer optimized for the background pulse (such as at 10 kHz) rather than for the main pulse. The electro-therapeutic stimulator includes a counter which forces purchasing of durations of signal time for ongoing use of the stimulator, and a challenge code procedure for facilitating additional time purchases.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 5, 2016
    Assignee: ARP Manufacturing LLC
    Inventors: Gary Edward Thomas, Denis E. Thompson, Franklin Williard Schroeder, Jr., Donald Anthony Demma
  • Patent number: 9295835
    Abstract: A bioelectronic medical method and system for rapidly destroying living cancer cells and the tumors they create including metastatic off-spring of such tumor(s) regardless of their location within a human or animal body. Calcium ions can be inserted into a nucleus of a cancer cell(s). The nucleus of the cancer cell(s) is then fragmented among many cancer cells (e.g., in a tumor) simultaneously with the transmission of a destructive analog electrically encoded signals to provide a medical cancer treatment thereof. A first target of medical cancer treatment is aimed principally into the nucleus and mitochondrion bodies of a malignancy associated with the cancer cell(s).
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: March 29, 2016
    Assignee: Neuro Code Tech Holdings, LLC
    Inventor: Eleanor L. Schuler
  • Patent number: 9289256
    Abstract: Surgical end effectors are disclosed having angled tissue-contacting surfaces. The end effectors may have a first jaw member that is movable relative to a second jaw member between an open position and a closed position. The first jaw member may have a first positively-angled tissue-contacting surface. The second jaw member may have a second positively-angled tissue-contacting surface. At least one of the jaw members may have at least one active electrode configured to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: March 22, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Frederick E. Shelton, IV, Chester O. Baxter, III, David C. Yates
  • Patent number: 9289592
    Abstract: Systems, apparatuses, and methods for differentiating between multiple leads that are implanted within a patient include a stimulator configured to be implanted at an implant site within the patient and generate electrical stimulation current, a plurality of leads each comprising one or more electrodes configured to deliver the electrical stimulation current at a stimulation site within the patient, and a shuttle assembly having a plurality of receiving ports each configured to receive a proximal portion of one of the leads and guide the leads from the stimulation site to the implant site of the stimulator. The shuttle assembly is configured to enable a user to differentiate between each of the leads after the leads are guided to the implant site of the stimulator.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: March 22, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kenny Kinyen Chinn, Michael A. Moffitt, Paul M. Meadows