Patents Examined by Chad Smith
  • Patent number: 9250397
    Abstract: An optical connector comprising a connector body, an enclosure that is a slit-shaped hole formed from one surface of the connector body into the connector body and accommodates a sheet-like optical waveguide with a tip of the optical waveguide abutting against a bottom of the hole, and a pressing section that is provided on a first surface of the enclosure facing a sheet surface of the enclosed optical waveguide and presses the enclosed optical waveguide toward a second surface of the enclosure facing the first surface so as to bring the enclosed optical waveguide into contact with the second surface.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: February 2, 2016
    Assignees: FUJITSU COMPONENT LIMITED, FUJITSU LIMITED
    Inventors: Ayumu Akabane, Mariko Kase, Osamu Daikuhara
  • Patent number: 9244225
    Abstract: Methods for the fabrication of orientation-patterned semiconductor structures are provided. The structures are light-waveguiding structures for nonlinear frequency conversion. The structures are periodically poled semiconductor heterostructures comprising a series of material domains disposed in a periodically alternating arrangement along the optical propagation axis of the waveguide. The methods of fabricating the orientation-patterned structures utilize a series of surface planarization steps at intermediate stages of the heterostucture growth process to provide interlayer interfaces having extremely low roughnesses.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: January 26, 2016
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Dan Botez, Thomas F. Kuech, Luke J. Mawst, Steven Christopher Ruder
  • Patent number: 9235015
    Abstract: A heat dissipation system and method are embodied in an optical subassembly (OSA) that mechanically couples with an electrical subassembly (ESA) of an optical communications module. When the OSA is coupled with the ESA, a heat dissipation block that is embedded in the OSA is spaced apart from components of the ESA by a small air gap. At least a portion of the heat that is generated by one or more of these components passes into the heat dissipation block, which extends through top and bottom surfaces of the OSA. Because the heat dissipation block never makes physical contact with the ESA or with components of the ESA, there is no risk of the block damaging the ESA or detrimentally affecting the electrical performance of the module.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: January 12, 2016
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Seng-Kum Chan
  • Patent number: 9235008
    Abstract: Disclosed herein is an optical module including: an optical element mounted on a substrate; and an optical connector mounted corresponding to the optical element so as to change a path of an optical signal of the optical element and transfer the optical signal having the changed path. The optical module may provide various communication performances using an optical connector in which first and second connector parts are optically coupled stably to each other. Particularly, the optical module does not have a silicon optical bench (SiOB) as a medium, thereby making it possible to reduce a thickness of a product.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: January 12, 2016
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seung Wook Park, Christian Romero, Young Do Kweon, Chang Bae Lee
  • Patent number: 9217829
    Abstract: A compact, low-loss and wavelength insensitive Y-junction for submicron silicon waveguides. The design was performed using FDTD and particle swarm optimization (PSO). The device was fabricated in a 248 nm CMOS line. Measured average insertion loss is 0.28±0.02 dB across an 8-inch wafer. The device footprint is less than 1.2 ?m×2 ?m, orders of magnitude smaller than MMI and directional couplers.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: December 22, 2015
    Assignee: Coriant Advanced Technology, LLC
    Inventors: Yi Zhang, Shuyu Yang, Tom Baehr-Jones
  • Patent number: 9195015
    Abstract: A bi-directional fiber optic transceiver includes a laser diode, a photodiode, first and second lenses, all of which share a common linear optical axis, and a housing. The first lens may have transmission increasing film thereon. The second lens may have a reflection increasing film thereon. An optical splitter may be between the first and second lenses. The first and/or second lenses may be spherical, hemispherical or aspheric. The transceiver size is reduced so that a circuit board can accommodate more components or be smaller in size. Utilizing hemispherical lenses can greatly increase the coupling ratio of the optical links between the photodiode, fiber and laser diode. Utilizing aspheric lenses with high coupling can serve high power output requirements. Use of spherical lenses (which extend the focal length) with aspheric lenses enables LD TO assemblies in individual housings to serve in various products.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: November 24, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Chien-Hsiung Chiu, Shih-Pin Ko, Hung-Yuan Chen
  • Patent number: 9190538
    Abstract: An optical connector includes a circuit board. The circuit board includes a substrate and a circuit unit. A photoelectric element and a driver chip are located on the substrate. The photoelectric element includes a conductive pin and a metallic layer. The conductive pin is formed on a surface of the photoelectric element away from the circuit board, and the metallic layer is formed on another surface of the photoelectric element facing the circuit board. The conductive pin and the metallic layer serve as terminals of the photoelectric element. The driver chip is electrically connected to the photoelectric element by the circuit unit.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: November 17, 2015
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Kuo-Fong Tseng
  • Patent number: 9188746
    Abstract: An optical fiber and lens substrate assembly includes: an optical fiber component including an optical fiber core wire, and an end-surface-fixing resin block in which the optical fiber core wire is embedded, and cross section of an optical fiber element wire and a secondary coating that constitute the optical fiber core wire are exposed to a smooth surface thereof; and a lens substrate attached to the smooth surface of the end-surface-fixing resin block.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: November 17, 2015
    Assignee: SONY CORPORATION
    Inventor: Hiizu Ootorii
  • Patent number: 9182546
    Abstract: A monolithic optoelectronic device has a spot-size converter optically connected to a waveguide. The overclad extending over the core of the waveguide is thinner and more highly doped that the overclad of the spot-size converter. This structure can be made by applying a process of selective etching and enhanced regrowth to create selective regions of the overclad of different thickness or doping.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 10, 2015
    Assignees: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V., Teraxion Inc.
    Inventors: Kelvin Prosyk, Ronald Kaiser, Karl-Otto Velthaus
  • Patent number: 9162507
    Abstract: A printing apparatus includes a first circulation pump which is provided in a channel between a print head and a first storage tank and which supplies ink from a second storage tank to the print head. The printing apparatus further includes a second circulation pump which is provided in a channel between the first storage tank and the second storage tank which supplies ink from the first storage tank to the second storage tank. The printing apparatus further includes a control unit which controls the driving of the first circulation pump and second circulation pump, and a detecting unit which detects the amount of ink stored in the second storage tank. The control unit controls the driving of the second circulation pump on the basis of a detection result by the detecting unit.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 20, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroyuki Tanaka, Shunya Sunouchi, Seiji Suzuki, Takaya Sato
  • Patent number: 9162477
    Abstract: Area information is obtained with respect to a specified color and nozzle position having color unevenness. Then, coordinate information indicating a nozzle position corresponding to the above area information is obtained in a printing head or nozzle array corresponding to an ink color relating to the specified color information. Next, the number of candidate correction values or candidate patches is obtained on the basis of nozzle coordinates obtained corresponding to the area, by referring to a table. In this table, for example, the number of candidate correction values is small at a nozzle position where an effect due to the variations of nozzle ejection characteristics such as a nozzle ejection volume is small and a change direction is constant, and the number of candidate correction values is large at a nozzle position where an effect due to variations of nozzle ejection characteristics is large.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: October 20, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Tohru Ikeda, Ryosuke Iguchi, Nobutaka Miyake, Akitoshi Yamada, Mitsuhiro Ono, Fumitaka Goto, Hidetsugu Kagawa, Tomokazu Ishikawa, Junichi Nakagawa, Senichi Saito
  • Patent number: 9158071
    Abstract: An optical path-changing member comprises a member main body which is made of a transparent material and in which a reflection section optically connecting the optical fiber to the light input and output end is formed, wherein the reflection section is a first lens having a concave shape when viewed from an incident direction and making light incident on the inside of the member main body from one of the optical fiber and the light input and output end be internally reflected in the member main body and directed to the other of the optical fiber and the light input and output end, a second lens having a convex shape toward the optical component is formed in a light incidence and emission surface of the member main body, that faces the optical component.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: October 13, 2015
    Assignee: FUJIKURA LTD.
    Inventors: Akito Nishimura, Shota Numata
  • Patent number: 9151896
    Abstract: A cable holding tool for holding optical fiber ribbons relative one another for preparation has a cable holding portion and an optical fiber holding portion, each having a cover and an opening therein to receive an optical cable and a fiber optic ribbon respectively. The cable holding tool also has at least one channel disposed between the cable holding portion and the optical fiber holding portion to receive and divert at least one optical fiber ribbon from the optical cable disposed in the cable holding portion from the optical fiber holding portion. A spacer is also provided that is movable parallel to the optical fiber groove from a first position to at least one second position to assist in staggering the fiber ribbons.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 6, 2015
    Assignee: US Conec, Ltd
    Inventors: Hiep Nguyen, Darrell R. Childers, Michael E. Hughes
  • Patent number: 9116323
    Abstract: A pressure-balanced enclosure for subsea use, and in particular for use as a submersible junction box in which subsea cables can be joined. The apparatus maintains a balanced pressure within the termination chamber; it is field installable, testable, and repairable. The termination chamber is not oil-filled; instead, it is substantially filled with a solid particulate fill material which includes a portion of elastomeric material.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 25, 2015
    Assignee: Teledyne Instruments, Inc.
    Inventor: James Cairns
  • Patent number: 9108409
    Abstract: The invention prevents inconveniences from being caused by ejection failure and unintended mixing of different colors. To this end, the invention performs preliminary ejection of ink after a wiping action to sweep mist adhering to a face of a printing head, in which an ejection opening is formed. Moreover, the amount of ink to be wastefully consumed by the preliminary ejection after the wiping is reduced. To this end, the number of preliminary ejections is regulated. The degree of adherence of mist to the ejection-opening-formed face depends on the amount of printing (the number of printed sheets, the number of ink ejections for printing, or the like). So, at the time of the preliminary ejection after the wiping, the number of ink ejections in the preliminary ejection is regulated in accordance with the amount of printing that has been done since the last wiping action.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: August 18, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kazuo Suzuki, Kazuhiko Sato, Taku Yokozawa, Yosuke Ishii
  • Patent number: 9110254
    Abstract: A method and spacer for assembling flexible optical waveguide ribbons and assembled stack of such ribbons. The method includes the steps of: providing at least two optical waveguide ribbons and a spacer, which includes at least two calibrated spaces; positioning a ribbon stack in the spacer, where the ribbon stack includes the at least two optical waveguide ribbons stacked on top of each other; constraining positioned ribbon stack in one of the calibrated spaces; and fixing constrained ribbon stack in the calibrated spaces.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: August 18, 2015
    Assignee: International Business Machines Corporation
    Inventors: Roger F Dangel, Daniel S Jubin, Tobias P Lamprecht, Bert Jan Offrein
  • Patent number: 9096948
    Abstract: Methods for the fabrication of orientation-patterned semiconductor structures are provided. The structures are light-waveguiding structures for nonlinear frequency conversion. The structures are periodically poled semiconductor heterostructures comprising a series of material domains disposed in a periodically alternating arrangement along the optical propagation axis of the waveguide. The methods of fabricating the orientation-patterned structures utilize a series of surface planarization steps at intermediate stages of the heterostructure growth process to provide interlayer interfaces having extremely low roughnesses.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: August 4, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Dan Botez, Thomas F. Kuech, Luke J. Mawst, Steven Christopher Ruder
  • Patent number: 9091593
    Abstract: An optical intensity determination unit includes: an optical input port; an optical output port; an optical resonator provided between the optical input port and the optical output port; a first light receiving element for converting at least a part of an optical signal output from a first output port of the optical resonator into an electric signal; a second light receiving element for converting at least a part of an optical signal output from a second output port of the optical resonator into an electric signal; a comparing circuit for determining magnitudes of the electric signals output from the first light receiving element and the second light receiving element to output a digital signal; and an optical branching circuit for branching light output from the second output port of the optical resonator into the optical output port and the second light receiving element.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: July 28, 2015
    Assignee: NEC CORPORATION
    Inventor: Kenji Sato
  • Patent number: 9086539
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: July 21, 2015
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Patent number: 9075210
    Abstract: An optical-electrical conversion module includes a circuit board, a planar optical waveguide formed on the circuit board, two first lenses and two second lenses mounted above the planar optical waveguide, a base plate electrically connected to the circuit board, and an optical signal emitting member and an optical signal receiving member mounted on the base plate. The planar optical waveguide forms two inclined surfaces. The base plate is positioned above the second lenses. Optical signals are reflected by the inclined surface, and are transmitted to the optical signal receiving member. The optical signal receiving member converts the optical signals to electrical signals to transmit to the circuit board. Electrical signals of the circuit board are converted to optical signals via the optical signal emitting member, and then are transmitted to the planar optical waveguide. The present disclosure further provides an optical transmission connecting assembly using the optical-electrical conversion module.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: July 7, 2015
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Kuo-Fong Tseng