Patents Examined by Chieh M. Fan
  • Patent number: 10305635
    Abstract: A method for transmitting data in a multiple-input-multiple-output space-time coded communication using a mapping table mapping a plurality of symbols defining the communication to respective antennae from amongst a plurality of transmission antennae and to at least one other transmission resource. The mapping table may comprise Alamouti-coded primary segments and may also comprise secondary segments, comprising primary segments. The primary segments in the secondary segments may be defined in accordance to an Alamouti based code pattern applied at the segment level to define a segment-level Alamouti based code.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: May 28, 2019
    Assignee: Apple Inc.
    Inventors: Robert Novak, Hosein Nikopourdeilami, Mo-Han Fong, Sophie Vrzic
  • Patent number: 10298428
    Abstract: A wireless transmission device includes a reception circuit that receives a ASK or PSK designation signal designating amplitude-shift keying (ASK) or phase-shift keying (PSK), respectively, an amplitude control signal generation circuit that generates an amplitude control signal having an amplitude corresponding to a change in a signal level of the data signal, a polarity reversal circuit that generates a polarity reversal signal by reversing a polarity of a carrier wave signal according to the signal level of the data signal upon receiving a ASK designation signal, an amplifier circuit that generates a PSK signal by amplifying the polarity reversal signal at an amplification rate based on the amplitude control signal upon receiving a PSK designation signal, and generates an ASK signal by modulating an amplitude of the carrier wave signal at an amplification rate based on the amplitude control signal upon receiving the ASK designation signal.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: May 21, 2019
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventor: Takashi Taya
  • Patent number: 10291458
    Abstract: A hybrid data transmission frame format for a hybrid single-carrier modulation and OFDM carrier modulation MIMO system and corresponding transmission/reception methods and devices. A transmitter employs single-carrier modulation for preambles and signaling fields via a single-carrier signal generator to produce single-carrier transmission sequences of transmission links. While to employs the same sampling rate to process all the data so as to match a receiver, the sampling rate of the single-carrier transmission sequences needs to be processed into being identical to that of OFDM via a pulse shaping multiphase filter before entering a digital-to-analog converter; the transmitter employs an OFDM modulation mode to transmit data field segments via an OFDM signal generator; and a data receiving process of the receiver is opposite to a data transmitting process of the transmitter.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: May 14, 2019
    Assignee: ZTE Wavestone Science and Technology Ltd.
    Inventors: Shiwen He, Bo Wu, Haiming Wang, Yongming Huang, Jun Zhang
  • Patent number: 10284360
    Abstract: An electronic circuit receives transmission signals from three or more communication lines. The electronic circuit includes a clock-data recovery circuit and a control value generation circuit. The clock-data recovery circuit outputs a recovered clock based on a transition generated in reception signals. The clock-data recovery circuit outputs recovered signals based on the recovered clock and the reception signals. The recovered clock has a first edge in response to the transition generated in the reception signals. The recovered clock has a second edge in response to a reset signal generated based on a delay of the recovered clock. The delay of the recovered clock is adjusted based on a control value provided from the control value generation circuit. The control value is adjusted based on change of a communication condition.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: May 7, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dongho Choi, Younwoong Chung
  • Patent number: 10270454
    Abstract: A clock and data recovery (CDR) device is disclosed. The CDR device comprises a sensing unit and an interpolator. The sensing unit is configured to detect a data center, a left data edge and a right data edge of a data on a data stream in a communication system, using a set of thresholds, in response to a first clock signal for sampling the data center, a second clock signal for sampling the left data edge and a third clock signal for sampling the right data edge. Each of the thresholds is related to a different level among data levels of the data. The interpolator is configured to generate the first clock signal based on information on the data center, and generate the second clock signal and the third clock signal based on information on the left and right data edges.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventor: Yu-Nan Shih
  • Patent number: 10263652
    Abstract: Systems and methods are provided for millimeter-wave (MMW) communication, the system includes a transceiver chip to generate and to receive signals. An interface is used to communicate the signals between the transceiver chip and one or more active antenna modules. The signals include modulated MMW signals and control signals. The transceiver chip includes baseband circuitry, up and down conversion mixers, and RF front-end circuitry. An active antenna module receives a first modulated MMW signal from the interface for transmission via antennas and to receive a second modulated MMW signal from the antennas for transmission through the interface to the transceiver chip.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 16, 2019
    Assignee: Avago Technologies International Sales PTE. Limited
    Inventors: Bevin George Perumana, Saikat Sarkar, Tirdad Sowlati
  • Patent number: 10250311
    Abstract: A MIMO system (100) and a method of generating a precoder for use in a MIMO system (100), when communicating with a UE (115), are provided. The method comprises receiving, from the UE (115), channel information relating to a channel on which data is transmitted; decomposing the channel information into components representing a transmission component and a signal strength component; and generating the precoder according to the transmission component and the signal strength component.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: April 2, 2019
    Assignee: NEC CORPORATION
    Inventors: Duong Pham, Yasushi Maruta
  • Patent number: 10243639
    Abstract: Disclosed is a method for supporting uplink multiple-input and multiple-output (MIMO) in a wireless communication system. A method for transmitting data according to the present invention comprises the steps of: mapping, to first orthogonal frequency division multiplexing (OFDM) symbols within a subframe, first demodulation reference signals (DMRSs) corresponding to a first antenna port and a second DMRSs corresponding to a second antenna port; mapping, to second OFDM symbols except the first OFDM symbols within the subframe, first data corresponding to the first antenna port and second data corresponding to the second antenna port; and transmitting the subframe by using resources allocated to the uplink, wherein predetermined precodings are applied to the first data and the second data, and the predetermined precodings may be changed according to the index of the second OFDM symbols.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: March 26, 2019
    Assignee: LG ELECTRONICS INC.
    Inventors: Youngtae Kim, Hanbyul Seo, Hyukjin Chae, Kijun Kim
  • Patent number: 10244274
    Abstract: A digital television (DTV) receiving system includes an information detector, a resampler, a timing recovery unit, and a carrier recovery unit. The information detector detects a known data sequence which is periodically inserted in a digital television (DTV) signal received from a DTV transmitting system. The resampler resamples the DTV signal at a predetermined resampling rate. The timing recovery unit performs timing recovery on the DTV signal by detecting a timing error from the resampled DTV signal using the detected known data sequence. The carrier recovery unit performs carrier recovery on the resampled DTV signal by estimating a frequency offset value of the resampled DTV signal using the detected known data sequence.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: March 26, 2019
    Assignee: LG ELECTRONICS INC.
    Inventors: Jong Moon Kim, In Hwan Choi, Kook Yeon Kwak, Byoung Gill Kim, Won Gyu Song, Jin Woo Kim, Hyoung Gon Lee
  • Patent number: 10237029
    Abstract: A transmitter transmitting payload data using OFDM symbols includes a frame builder configured to receive the payload data, receive signalling data for use in detecting and recovering the payload data at a receiver, and form the payload data with the signalling data into transmission frames. A modulator is configured to modulate a first OFDM symbol with the signalling data forming a part of each of the frames and to modulate one or more second OFDM symbols with the payload data to form each of the frames. The transmitter combines a signature sequence with the first OFDM symbol, so that the first OFDM symbol can be detected within the frame before the second OFDM symbol. The transmitter includes a pilot signal inserter configured to insert a number of pilot symbols on selected sub-carriers of the first OFDM symbol sufficient to estimate a coarse frequency offset of the transmitted OFDM symbol.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: March 19, 2019
    Assignee: SATURN LICENSING LLC
    Inventor: Samuel Asangbeng Atungsiri
  • Patent number: 10230427
    Abstract: A method for direct current power line communication in a photovoltaic system includes (a) transferring power between a photovoltaic device and a load using a power line, (b) detecting a change in operation of the power line, and (c) in response to the detected change in operation of the power line, decoding operating state of the power line to obtain information. A method for direct current power line communication in a photovoltaic system includes (a) transferring power between a photovoltaic device and a load using a power line, (b) changing operation of the power line, and (c) encoding operating state of the power line to represent information to be communicated.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: March 12, 2019
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Seth M. Kahn
  • Patent number: 10218491
    Abstract: A receiving circuit includes a deserializer circuit configured to convert serial data to parallel data in accordance with an operating clock, a phase difference detection circuit configured to detect a phase difference between the operating clock and the serial data on the basis of the parallel data, a control circuit configured to determine a phase adjustment amount for shifting a phase of the operating clock by 1 bit of the serial data in accordance with a result of integration of the phase difference when a separation of the parallel data output from the deserializer circuit is not logically correct, and a phase interpolator circuit configured to cause the phase of the operating clock to shift by the 1 bit of the serial data by using the phase adjustment amount in accordance with the result of the integration of the phase difference.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: February 26, 2019
    Assignee: SOCIONEXT INC.
    Inventor: Tomohiro Hashimoto
  • Patent number: 10205539
    Abstract: The present disclosure is directed to apparatuses for preventing significant amounts of common mode noise from a PHY transceiver, such as an Ethernet PHY transceiver, from coupling to an unshielded twisted-pair cable. The apparatuses can provide common mode noise isolation, while limiting any common mode noise to differential mode noise (CM-DM) conversion. Common mode noise is generally ignored by a PHY transceiver that receives a differential data signal because of differential signaling. However, when common mode noise is converted to differential mode noise, then data errors can result. Thus, limiting any CM-DM conversion is important.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: February 12, 2019
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Ahmad Chini, Mehmet V. Tazebay
  • Patent number: 10193716
    Abstract: Methods and systems are described for generating two comparator outputs by comparing a received signal to a first threshold and a second threshold according to a sampling clock, the first and second thresholds determined by an estimated amount of inter-symbol interference on a multi-wire bus, selecting one of the two comparator outputs as a data decision, the selection based on at least one prior data decision, and selecting one of the two comparator outputs as a phase-error indication, the phase error indication selected in response to identification of a predetermined data decision pattern.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: January 29, 2019
    Assignee: KANDOU LABS, S.A.
    Inventors: Ali Hormati, Richard Simpson
  • Patent number: 10187133
    Abstract: A system and machine-implemented method are described for adjusting communication with a first distributed-input-distributed-output (DIDO) client. For example, a method according to one embodiment of the invention comprises: applying DIDO weights to one or more data streams to generate one or more DIDO precoded data streams; receiving input channel quality information (CQI) and/or channel state information (CSI) related to DIDO communication channels over which the DIDO precoded data streams are to be transmitted; determining a power scaling factor based on the CQI and/or CSI; and applying the power scaling factor to each of the DIDO precoded data streams.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: January 22, 2019
    Assignee: REARDEN, LLC
    Inventors: Antonio Forenza, Stephen G. Perlman
  • Patent number: 10171128
    Abstract: A data transmission method includes the following steps: determining a transmission resource to be used and a complex-valued spreading sequence to be used; processing a data symbol to be sent by using the complex-valued spreading sequence to generate a symbol sequence; and sending the symbol sequence through the transmission resource.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: January 1, 2019
    Assignee: XI'AN ZHONGXING NEW SOFTWARE CO., LTD.
    Inventors: Weimin Li, Zhifeng Yuan, Zhaohua Lu
  • Patent number: 10153806
    Abstract: Described is a cognitive signal processor that can denoise an input signal that contains a mixture of waveforms over a large bandwidth. Delay-embedded mixture signals are generated from a mixture of input signals. The delay-embedded mixture signals are mapped with a reservoir computer to reservoir states of a dynamical reservoir having output layer weights. The output layer weights are adapted based on short-time linear prediction. Finally, a denoised output of the mixture of input signals is generated.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: December 11, 2018
    Assignee: HRL Laboratories, LLc
    Inventors: Peter Petre, Shankar R. Rao
  • Patent number: 10148413
    Abstract: A method for synchronization of an emitter of FBMC system with a RACH channel. On the emitter, a pseudo-random sequence with an initial offset in relation to a reference sequence is inserted into the spectral band of the RACH channel. On the receiver, the sequence received on the RACH channel is estimated using a sliding FFT using a starting point and correlated with the reference sequence. The position of the starting point leading to the highest correlation peak is selected as well as the correlation position corresponding to this peak, with these two positions making it possible to determine the offset of the sequence received with the reference sequence. This offset is transmitted to the emitter and the latter deduces from it a delay to be compensated in the emission in order to synchronize with the receiver.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: December 4, 2018
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Nicolas Cassiau
  • Patent number: 10136292
    Abstract: A power outlet for controlling power to an external device and transmitting data to the external device, the power outlet including: a housing containing at least one alternating-current power input connection; a power output connection; a data connector; a sensor module; a wireless communication module, including an antenna; a processing unit configured to receive data and control an electrically connected device through the power output connection and/or data connector based on the received data.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: November 20, 2018
    Assignee: LIFI Labs, Inc.
    Inventors: Phillip Bosua, Marc Alexander
  • Patent number: 10129070
    Abstract: Methods and systems for correcting carrier frequency offsets (CFOs) in a wireless transceiver are disclosed. The method includes receiving a first predetermined number of data packets and analyzing the first predetermined number of data packets to determine one or more wireless link quality metrics. The method includes adjusting a local oscillator in accordance with a first local oscillator adjustment strategy. The method includes receiving a second predetermined number of data packets and analyzing the second predetermined number of data packets to determine the one or more wireless link quality metrics. The method includes repeating the first local oscillator adjustment strategy if the wireless link quality metrics improve. The method includes changing to a second local oscillator adjustment strategy if the wireless link quality metrics worsen and adjusting the local oscillator in accordance with the second local oscillator adjustment strategy.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: November 13, 2018
    Assignee: Phazr, Inc.
    Inventors: Robert Clark Daniels, Khurram Muhammad, Farooq Khan