Patents Examined by Christopher A Culbert
  • Patent number: 12201021
    Abstract: A method for forming a unique, environmentally-friendly energy harvesting element is provided. A configuration of the energy harvesting element causes the energy harvesting element to autonomously generate renewable energy for use in electronic systems, electronic devices and electronic system components. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. An energy harvesting component is also provided that includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: January 14, 2025
    Assignee: FACE INTERNATIONAL CORPORATION
    Inventor: Clark D Boyd
  • Patent number: 12191329
    Abstract: A uniform bridge gradient (UBG) time-of-flight (ToF) photodiode block is described, such as for integration with image sensor pixels. The UBG ToF photodiode block can be part of a UBG ToF pixel, and an image sensor can include an array of such pixels. Each UGB ToF photosensor block has multiple taps for selective activation, and a photodiode region designed for complete and rapid transit of photocarriers, as they are generated, via the multiple taps. Embodiments of the photodiode region include a photodiode-defining implant, a relatively shallow first bridging implant, and relatively deep second bridging implant. The bridging implants provide lateral bridging with a uniform doping gradient near and across the multiple taps.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: January 7, 2025
    Assignee: Shenzhen Goodix Technology Co., Ltd.
    Inventor: Robert Daniel McGrath
  • Patent number: 12178115
    Abstract: A light emitting element includes a first electrode, a hole transport region on the first electrode, an emission layer on the hole transport region and containing a light emitting polymer compound derived from a mixture of a polyphenylene vinylene-based compound having a weight average molecular weight of about 1.3×106 to about 1.6×106 and an organic compound represented by Formula 1, and a second electrode on the emission layer, wherein, the mixture contains the polyphenylene vinylene-based compound and the organic compound in a molar ratio of about 9:1 to about 8:2, and the light emitting element may thus include an emission layer having improved flexibility and strength.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: December 24, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventor: Junwoo Park
  • Patent number: 12176378
    Abstract: A display panel including a circuit board having pads thereon, and a plurality of pixel regions arranged on the circuit board, each of the pixel regions including a first LED stack disposed on the circuit board, a first bonding layer disposed between the first LED stack and the circuit board, a second LED stack disposed on the first LED stack, a third LED stack disposed on the second LED stack, first through-vias passing through the first LED stack and the first bonding layer, second through-vias passing through the second LED stack, and third through-vias passing through the third LED stack, in which the first through-vias pass through the first LED stack and the first bonding layer, and are connected to the pads of the circuit board.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: December 24, 2024
    Assignee: SEOUL VIOSYS CO., LTD.
    Inventors: Jong Hyeon Chae, Seom Geun Lee, Seong Kyu Jang
  • Patent number: 12171090
    Abstract: Uniform layouts for SRAM and register file bit cells are described. In an example, an integrated circuit structure includes a six transistor (6T) static random access memory (SRAM) bit cell on a substrate. The 6T SRAM bit cell includes first and second active regions parallel along a first direction of the substrate. First, second, third and fourth gate lines are over the first and second active regions, the first, second, third and fourth gate lines parallel along a second direction of the substrate, the second direction perpendicular to the first direction.
    Type: Grant
    Filed: June 14, 2023
    Date of Patent: December 17, 2024
    Assignee: Intel Corporation
    Inventors: Zheng Guo, Clifford L. Ong, Eric A. Karl, Mark T. Bohr
  • Patent number: 12156325
    Abstract: A package carrier includes a circuit structure layer and a heat-conducting element. The circuit structure layer includes a notch portion. The heat-conducting element includes a first heat-conducting portion and a second heat-conducting portion vertically connected to the first heat-conducting portion. The notch portion exposes the first heat-conducting portion, and an outer surface of the second heat-conduction portion is aligned with a side surface of the circuit structure layer.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: November 26, 2024
    Assignee: Unimicron Technology Corp.
    Inventors: Ming-Hao Wu, Hsuan-Wei Chen, Chi-Chun Po
  • Patent number: 12144178
    Abstract: Disclosed are three-dimensional semiconductor memory devices and methods of detecting electrical failure thereof. The three-dimensional semiconductor memory device includes a substrate with a first conductivity including a cell array region and an extension region having different threshold voltages from each other, a stack structure on the substrate and including stacked electrodes, an electrical vertical channel penetrating the stack structure on the cell array region, and a dummy vertical channel penetrating the stack structure on the extension region. The substrate comprises a pocket well having the first conductivity and provided with the stack structure thereon, and a deep well surrounding the pocket well and having a second conductivity opposite to the first conductivity.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: November 12, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Taeyoung Kim, Moorym Choi, Dongchan Kim
  • Patent number: 12107142
    Abstract: The present disclosure provides a method for manufacturing vertical device. The method includes: forming a plurality of first grooves in the front side of the N-type heavily doped layer; forming an N-type lightly doped layer in the plurality of first grooves and on the front side of the N-type heavily doped layer; forming second grooves in the N-type lightly doped layer; forming a P-type semiconductor layer in the second grooves and on the front side of the N-type lightly doped layer; planarizing the P-type semiconductor layer; forming a passivation layer on the planarized structure; forming a third groove in the passivation layer, wherein the third groove has a depth equal to a thickness of the passivation layer; and forming a first electrode and a second electrode.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: October 1, 2024
    Assignee: ENKRIS SEMICONDUCTOR, INC.
    Inventor: Kai Cheng
  • Patent number: 12057520
    Abstract: A method for manufacturing a display substrate includes: fabricating a first functional structure on a first side of a common substrate, and fabricating a second functional structure on a second side of the common substrate; fabricating a via hole in an edge region of the common substrate; and fabricating a conductive connection portion in the via hole, a first end of the conductive connection portion on the first side extending out of the via hole and coupled to a first functional pattern in the first functional structure, and a second end of the conductive connection portion on the second side extending out of the via hole and coupled to a second functional pattern in the second functional structure. The method provided in embodiments of the present disclosure is applied to the manufacturing of a display substrate.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: August 6, 2024
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yingwei Liu, Zhiwei Liang, Ke Wang, Zhanfeng Cao, Shuang Liang
  • Patent number: 12027479
    Abstract: The present application provides a semiconductor device with an edge-protecting spacer over a bonding pad. The semiconductor device includes a bonding pad disposed over a semiconductor substrate; a first spacer disposed over a top surface of the bonding pad; a dielectric liner disposed between the first spacer and the bonding pad; a dielectric layer between the bonding pad and the semiconductor substrate, wherein the dielectric layer includes silicon-rich oxide; and a conductive bump disposed over the bonding pad and covering the first spacer and the dielectric liner, wherein the conductive bump is electrically connected to a source/drain (S/D) region in the semiconductor substrate through the bonding pad.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: July 2, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Jung-Hsing Chien
  • Patent number: 12009409
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a gate dielectric layer on the fin-shaped structure; forming a gate electrode on the fin-shaped structure; performing a nitridation process to implant ions into the gate dielectric layer adjacent to two sides of the gate electrode; and forming an epitaxial layer adjacent to two sides of the gate electrode.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: June 11, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Fu Chang, Kuan-Hung Chen, Guang-Yu Lo, Chun-Chia Chen, Chun-Tsen Lu
  • Patent number: 11978802
    Abstract: Provided are FinFET devices and methods of forming the same. A dummy gate having gate spacers on opposing sidewalls thereof is formed over a substrate. A dielectric layer is formed around the dummy gate. An upper portion of the dummy gate is removed and upper portions of the gate spacers are removed, so as to form a first opening in the dielectric layer. A lower portion of the dummy gate is removed to form a second opening below the first opening. A metal layer is formed in the first and second openings. The metal layer is partially removed to form a metal gate.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Wei Hsu, Chih-Hao Wang, Huan-Chieh Su, Wei-Hao Wu, Zhi-Chang Lin, Jia-Ni Yu
  • Patent number: 11903267
    Abstract: An organic light-emitting display apparatus includes a plurality of first emission units, each including a first organic light-emitting device configured to emit light in at least a first direction and through a first display surface, a plurality of second emission units, each including a second organic light-emitting device configured to emit in a second direction opposite to the first direction and through a second display surface. The first emission units and the second emission units are alternately disposed. The apparatus further includes a transmissive area disposed adjacent to but not overlapping with the plurality of first emission units and the plurality of second emission units when viewed from a direction perpendicular to the first display surface, and capable of transmitting external light through the first and second display surfaces in the transmissive area.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: February 13, 2024
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Hae-Kwan Seo, Do-Youb Kim, Bon-Seog Gu
  • Patent number: 11894328
    Abstract: The present application provides a semiconductor device with an edge-protecting spacer over a bonding pad. The semiconductor device includes a bonding pad disposed over a semiconductor substrate; a first spacer disposed over a top surface of the bonding pad; a dielectric liner disposed between the first spacer and the bonding pad; a dielectric layer between the bonding pad and the semiconductor substrate, wherein the dielectric layer includes silicon-rich oxide; and a conductive bump disposed over the bonding pad and covering the first spacer and the dielectric liner, wherein the conductive bump is electrically connected to a source/drain (S/D) region in the semiconductor substrate through the bonding pad.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: February 6, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Jung-Hsing Chien
  • Patent number: 11876123
    Abstract: According to a semiconductor device herein, the device includes a substrate. An active device is formed in the substrate. The active device includes a collector region, a base region formed on the collector region, and an emitter region formed on the base region. An isolation structure is formed in the substrate around the active device. A trench filled with a compressive material is formed in the substrate and positioned laterally adjacent to the emitter region and base region. The trench extends at least partially into the collector region.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: January 16, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Anthony K. Stamper, Vibhor Jain, Renata A. Camillo-Castillo
  • Patent number: 11830877
    Abstract: Embodiments of the invention are directed to a configuration of nanosheet FET devices in a first region of a substrate. Each of the nanosheet FET devices in the first region includes a first channel nanosheet, a second channel nanosheet over the first channel nanosheet, a first gate structure around the first channel nanosheet, and a second gate structure around the second channel nanosheet, wherein the first gate structure and the second gate structure pinch off in a pinch off area between the first gate structure and the second gate structure. The first gate structure includes a doped region, and the second gate structure includes a doped region. At least a portion of the pinch off area is undoped.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: November 28, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Jingyun Zhang, Choonghyun Lee, Pouya Hashemi, Alexander Reznicek
  • Patent number: 11805672
    Abstract: Provided is a display device that can retard the degradation of light-emitting elements even when the display device is used in a high temperature environment. A display device includes a TFT layer, a light-emitting element layer provided with a plurality of light-emitting elements, a heat dissipating layer, an extraction member, and a thermal insulation layer that insulates the light-emitting elements from external heat. The thermal insulation layer is made from a material containing a first resin in which a metal complex compound having an ammonium salt as a ligand is dispersed. The TFT layer is formed between the heat dissipating layer and the light-emitting element layer. The heat dissipating layer overlaps the light-emitting elements. The thermal insulation layer surrounds the heat dissipating layer. The extraction member is formed to overlap the thermal insulation layer. The heat dissipating layer and the thermal insulation layer are in direct contact with the TFT layer.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: October 31, 2023
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masanobu Mizusaki, Masakazu Shibasaki
  • Patent number: 11804490
    Abstract: A semiconductor device includes a fin type pattern extending in a first direction on a substrate, a first gate electrode extending in a second direction intersecting the first direction on the fin type pattern, a source/drain region on a side wall of the first gate electrode and in the fin type pattern, a separation structure extending in the first direction on the substrate, the separation structure including a first trench and being spaced apart from the fin type pattern and separating the first gate electrode, an interlayer insulating layer on a side wall of the separation structure and covering the source/drain region, the interlayer insulating layer including a second trench having a lower surface lower than a lower surface of the first trench, and a contact connected to the source/drain region and filling the first trench and the second trench.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: October 31, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Joong Gun Oh, Sung Il Park, Jae Hyun Park, Hyung Suk Lee, Eun Sil Park, Yun Il Lee
  • Patent number: 11791440
    Abstract: A method of manufacturing a light emitting element includes forming an n-side electrode at a lateral surface of an n-type semiconductor layer so as not to cover a light extraction surface. Using a portion of a silicon substrate left on an n-type semiconductor layer as a mask, an insulating film formed at a lateral surface of a semiconductor layered body is removed, to expose a lateral surface of the n-type semiconductor layer and a lateral surface of a resin layer. An n-side electrode positioned between the lateral surface of the n-type semiconductor layer and the lateral surface of the resin layer and connected to the exposed lateral surface of the n-type semiconductor layer is formed. Thereafter, the portion of the silicon substrate is removed, to expose the n-type semiconductor layer.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: October 17, 2023
    Assignee: NICHIA CORPORATION
    Inventor: Hirofumi Nishiyama
  • Patent number: 11765884
    Abstract: The present disclosure relates to a semiconductor device and a method for forming the semiconductor device. The semiconductor device includes a source region and a drain region in a semiconductor substrate, and a bit line over the source region. The semiconductor device also includes a first epitaxial structure over the drain region, and a capacitor contact over the first epitaxial structure. A bottom surface of the capacitor contact is higher than a bottom surface of the bit line.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: September 19, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang