Patents Examined by Christopher A. Fiorilla
  • Patent number: 6235225
    Abstract: A process for producing a biocompatible implant material which can be suitably shaped into a variety of forms. A binder is added to a mixture of hydroxylapatite powder and calcium phosphate glass frit (5 wt. %), to thereby prepare a slurry, and the resultant slurry is granulated, to prepare spherical raw material granules. Separately, spherical polyisobutyl methacrylate particles are prepared, and the particles are dry-mixed with the above-prepared granules, to thereby obtain a powder mixture. The powder mixture is compacted using a mold press, to thereby form a cuboid sample. The resultant compact is heated in a drier at 170° C. for three hours, to thereby melt spherical polyisobutyl methacrylate particles. Thereafter, the compact is allowed to cool, to thereby bind the raw material granules together via the polyisobutyl methacrylate that solidifies after melting. After the compact is allowed to cool, the compact is subjected to shaping by use of a copy machining machine and also to drilling.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: May 22, 2001
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Kohji Okada, Tsunetoshi Okura, Jun Sugimoto, Masahiko Okuyama
  • Patent number: 6231792
    Abstract: A porous composite product comprised of a network of fibers is produced by forming an unsintered preformed network of fibers and a gasifiable structure forming agent, followed by gasification of the structure forming agent prior to sintering of the fibers at appropriate junction points. The preferred structure forming agent is a cellulosic material.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: May 15, 2001
    Assignee: ABB Lummus Global Inc.
    Inventors: Rudolf A. Overbeek, Ali M. Khonsari, Yung-Feng Chang, Lawrence L. Murrell, Bruce J. Tatarchuk, Michael W. Meffert
  • Patent number: 6228297
    Abstract: A process of producing relatively large, dense, free-standing silicon carbide articles by chemical vapor deposition is enabled by the provision of specially designed isolation devices. These devices segregate silicon carbide deposits on the intended portions of substrates, thereby alleviating the need to fracture heavy silicon carbide deposits in order to remove, or otherwise move, the substrate, with the heavy deposit thereon, from the deposition furnace. The isolation devices enable the use of more efficient vertically extended vacuum furnaces. The isolation devices also enable the commercial production of relatively dense, large, thin-walled, silicon carbide shells.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: May 8, 2001
    Assignee: Rohm and Haas Company
    Inventors: Jitendra Singh Goela, Michael A. Pickering
  • Patent number: 6228318
    Abstract: In a method for manufacturing ceramic components, a resin mold is initially filled with a paste containing a ceramic material. Next, a ceramic powder is applied on the paste. The ceramic powder and paste are then press-formed and removed from the resin mold. Finally, the ceramic powder and paste are baked. The method allows manufacturing of ceramic components having a microstructure without collapse. Additionally, ceramic components having a large area can be manufactured without warping.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: May 8, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuo Nakamae, Yoshihiro Hirata
  • Patent number: 6224806
    Abstract: A cavity plate of an ink jet printer head is adapted to be attached to a piezoelectric element member and has walls prescribing a plurality of ink storing chambers and a plurality of ink discharge holes. A mold for molding the cavity is provided with: a corniform block member including (i) a plurality of corniform convex portions to mold the ink storing chambers, each having an opening portion on a side of an attachment surface of the cavity plate to be attached to the piezoelectric element member, and (ii) a plurality of corniform concave portions to mold partition walls of the cavity plate for partitioning each of the ink storing chambers; and plurality of pin members to mold the ink discharge holes, which are continuous to the ink storing chambers such that the ink discharge holes have straight tubular portions respectively from the ink storing chambers to ink discharge tip portions at an ink discharge surface of the cavity plate on an opposite side of the attachment surface.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: May 1, 2001
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Toshio Inose, Makoto Kato
  • Patent number: 6221309
    Abstract: A method for manufacturing a fishing weight prevents environmental pollution. The method includes the steps of molding the fishing weight of a ceramic material and heating the molding material up to a predetermined temperature to convert the heated material into a pure earth material.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: April 24, 2001
    Inventor: Manjoo Kim
  • Patent number: 6221308
    Abstract: A fired body and method for producing the body that involves compounding the components of powder materials, binder, aqueous solvent for the binder, and non-solvent with respect to at least the solvent, binder, and powder materials. The non-solvent is made up of a high molecular weight organic portion having a molecular weight of greater than 200, and a low molecular weight organic portion having a molecular weight of up to 200. The components are mixed and plasticized to form a plasticized mixture which is then shaped to form a green body. The green body is then dried and fired.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: April 24, 2001
    Assignee: Corning Incorporated
    Inventor: Y. Lisa Peng
  • Patent number: 6217822
    Abstract: A method and an apparatus for making straight fuel cell tubes are disclosed. Extruded tubes comprising powders of fuel cell material and a solvent are dried by rotating the extruded tubes. The rotation process provides uniform circumferential drying which results in uniform linear shrinkage of the tubes. The resultant dried tubes are very straight, thereby eliminating subsequent straightening steps required with conventional processes. The method is particularly useful for forming inner air electrode tubes of solid oxide fuel cells.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: April 17, 2001
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Brian P. Borglum
  • Patent number: 6217820
    Abstract: A method of manufacturing a ferrite sintered body includes the steps of: adding B4C in a ferrite raw material and firing the ferrite raw material, whereby the ferrite sintered body has a high &mgr;i and a high Q, is less irregular in its characteristics, has a high volume resistivity and is capable of preventing deterioration of insulating resistance.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: April 17, 2001
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Junji Kurobe, Hideo Ajichi, Takashi Kodama, Takehiro Konoike, Akihiro Nakamura
  • Patent number: 6217816
    Abstract: An inorganic binder and a dissolving agent are put into ceramic powder. They are mixed to form a plastic green mixture. Then the said mixture is formed into a thin green layer. Preferably, this thin green layer will be preheated and dried such that the thin green layer will be hardened due to the bonding effect of the inorganic binder. A portion of the thin green layer exposed under a directed high-energy beam is sintered, preferably by a laser beam, to cause ceramic molecules to bond together locally due to heat fusion. By controlling the scanning path of the high-energy beam, a two-dimensional thin cross section of the ceramic part in arbitrary form can be produced. A second thin ceramic layer can be built onto the first thin ceramic layer and bonded to it by the same method. After multiple repetitions of this procedure a three dimensional ceramic part can be fabricated layer upon layer. The green portion, which is not scanned by the high-energy beam, will be removed with suitable method.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: April 17, 2001
    Assignee: National Science Council
    Inventor: Hwahsing Tang
  • Patent number: 6217821
    Abstract: A method of forming a distortion-free circuit whereby a conductive composition is applied to at least one layer of green ceramic tape. The conductive composition formulation is based on total composition, conductive powder selected from Ag, Pd, Pt and mixtures thereof and 0.5 to 1.5 wt. % boron; wherein a and b are dispersed in organic medium. The green tape formulation is, based on total composition, 25-50 wt. % glass composition comprising, based on mole %, 50-67% B2O3; 20-50% alkaline earth metal oxide; 2-15% rare earth oxide and 0-6% alkali metal oxide and 0-10% Al2O3; 50-75 wt. % refractory oxide and organic polymeric binder. The assemblage is fired to form a distortion-free circuit.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: April 17, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Paul C. Donohue
  • Patent number: 6214271
    Abstract: The invention relates to post pyrolysis thermal treatment for pyrolytic manganese dioxide coatings for use in conjunction with porous anodized valve metal nitride electrolytic capacitor anodes for the purpose of transforming the manganese dioxide to a higher conductivity form of manganese dioxide.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: April 10, 2001
    Assignee: Kemet Electronics Corporation
    Inventors: Randolph S. Hahn, Brian J. Melody, John T. Kinard, David A. Wheeler
  • Patent number: 6210626
    Abstract: A cordierite body is produced by providing cordierite-forming raw materials. The raw materials are intimately blended with effective amount of vehicle and forming aids to impart plastic formability and green strength to the raw materials and form a plastic mixture. A green body is formed which is dried and heated from room temperature up to a maximum temperature of about 1360° C. to 1435° C. at an average heating rate of at least about 315° C. per hour and held at maximum temperature for about 0.05 to 4.4 hours. The total heating time from room temperature to the end of the hold at the maximum temperature is less than about 4.5 hours. The resulting body is predominately cordierite, having a mean coefficient of thermal expansion from about 25° C. to 800° C. of less than about 15×10−7° C.−1 in at least one direction.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: April 3, 2001
    Assignee: Corning Incorporated
    Inventors: Edward E. Cornelius, Gregory A. Merkel
  • Patent number: 6210625
    Abstract: The invention is a method of making a novel spherical form of granulated products that can be effectively used in various product forms in drug, fertilizer, foodstuff, feed, agricultural chemical, catalyst, ceramics, powder metallurgy, detergent, plastic, and bio-material fields, for instance, as catalysts, lightweight materials, sound-insulating materials, microcapsules, and lightweight aggregates. To obtain a granulated product which is a spherical solid shell having a spherical space therein, a polymer having high water absorption properties is swollen by the absorption of water therein, and then brought in contact with a powder to form a powder layer all over the surface of the swollen polymer particle. This spherical particle is then dried and fired if necessary.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: April 3, 2001
    Assignee: Mikuni Corporation
    Inventors: Mitsuhiro Matsushita, Shinpei Inamura
  • Patent number: 6207102
    Abstract: A method of sintering cemented carbide bodies includes heating said bodies to the sintering temperature in a suitable atmosphere and cooling. If said cooling at least to below 1250° C. is performed in a higher speed i.e. at more than 20° C./min cemented carbide bodies with no surface layer of binder phase are obtained. This is an advantage when said bodies are to be coated with wear resistant layers by the use of CVD-, MTCVD- or PVD-technique.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: March 27, 2001
    Assignee: Sandvik AB
    Inventors: Barbro Rohlin, Margareta PĂ„lsson
  • Patent number: 6207230
    Abstract: A method of preparing a high-heat-resistance resin composite ceramic that can be used at a high temperature of over 400° C., the high-heat-resistance composite ceramic exhibiting remarkably high heat resistance, excellent in processability, durability against chemicals and durability against plasma, further, exhibiting “outgassing” to a lesser degree at a high temperature under high vacuum. The method comprises the steps of impregnating an inorganic continuously porous sintered body (I) having an open porosity of at least 0.5% with an organometallic compound (M), heat-treating the impregnated inorganic continuously porous sintered body (I) to decompose the organometallic compound (M) and thereby forming a metal compound which is a carbide, a nitride, an oxide or a composite oxide on an inner wall plane of each of open pores, and filling a heat-resistant silicone resin (R) in the open pores by impregnation under vacuum and thermally curing the heat-resistant silicone resin (R).
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: March 27, 2001
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazuyuki Ohya, Norio Sayama
  • Patent number: 6203638
    Abstract: An injection molded ceramic cup, such as a teacup, includes a body and a handle. The body and handle together are an integral, one-piece, unitary construction formed of ceramic and a binder in a single injection molding operation. Additionally, an injection molded article, such as a ceramic cup, has a concealed sprue and includes an injection molded article body having an outer surface defining a recess and a sprue (whether negative or positive) terminating in the recess. A plug is disposed in the recess for concealing the sprue, the plug being molded separate and distinct from the article, having a first surface for concealing the sprue and a sidewall for substantially filling the recess, and being fired in situ with the article to secure the article and plug together.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: March 20, 2001
    Assignee: Certech, Inc.
    Inventor: Stuart Z. Uram
  • Patent number: 6200517
    Abstract: A method for forming an article involves forming a mixture of components of powder materials, organic binder, solvent for the binder, non-solvent with respect to at least the binder, the solvent, and the powder materials, wherein the non-solvent is lower in viscosity than the binder combined with the solvent, and an agent for retarding the oxidation of the organic components. The components are mixed and plasticized, and shaped into a green structure which is then fired to impart strength and form the product article. The product article has fewer cracks than it would have absent the oxidation-retarding agent.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: March 13, 2001
    Assignee: Corning Incorporated
    Inventors: Y. Lisa Peng, May Y. Xun
  • Patent number: 6197248
    Abstract: A process for preparing a powder of aluminum titanate, including the steps of subjecting to pressure molding a mixture of 100 parts by weight of a mixture of Al2O3 and TiO2 at a molar ratio of the former: the latter of 1:0.95-1.05, 2 to 5 parts by weight of SiO2, 2 to 5 parts by weight of iron oxide calculated as Fe2O3 and 1 to 3 parts by weight of a powder of an organic substance; sintering the molded product at a temperature of 1600 to 1700° C. in a closed container; and pulverizing the molded product. A further process for preparing a sintered body of aluminum titanate includes the steps of molding the powder of aluminum titanate obtained by the above-mentioned process and sintering the molded product at 1450 to 1550° C.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: March 6, 2001
    Inventors: Tsutomu Fukuda, Masahiro Fukuda
  • Patent number: 6193840
    Abstract: A method for producing surface-treated paper, in particular of fine paper, and a dry end of a paper machine that makes use of the method. A paper web that has been dewatered by pressing is dried in the forward dryer section, in which drying energy is applied to the paper web over the entire length of the forward dryer section asymmetrically in the z-direction from the side of the bottom face of the web. This step is carried out by a number of successive groups with single-wire draw that are open downward. In this manner, shrinkage of the web both in the machine direction and in the cross direction is reduced or at least partially prevented, which shrinkage tends to take place when the dry solids content becomes higher. Paper broke is removed from underneath the drying groups that are open downward substantially by the force of gravity onto the broke conveyor placed underneath.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: February 27, 2001
    Assignee: Valmet Corporation
    Inventors: Seppo Elijoki, Heikki Ilvespaa, Antti Kuhasalo, Reima Kerttula