Patents Examined by Christopher A Hixson
  • Patent number: 9753033
    Abstract: Apparatuses and methods of optically analyzing fluid within a pipette are described herein. In an embodiment, an optical reader subassembly includes a pipette having a tip, the pipette configured to aspirate a fluid sample and hold the fluid sample within the tip, a housing including a reentrant seal and an internal area, the housing configured to receive at least the tip of the pipette through the reentrant seal so that the tip of the pipette is located in a light tight manner within the internal area, a light source positioned to be in proximity to the tip of the pipette when the tip of the pipette is received by the housing, the light source configured to project light through the tip of the pipette and onto the fluid sample held within the tip, and an optical sensor configured to take a reading of the fluid sample held within the tip of the pipette without any of the fluid sample being injected from the pipette.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: September 5, 2017
    Assignee: Hycor Biomedical, LLC
    Inventors: Ronald Norman Diamond, Steve Michael Gann, Eric Darnell Hall, Tae Ho Hwang, John Lewis Morton, Anatoly Moskalev, Bruce Alan Sargeant, Dennis Edwin Rieger, Marinela Gombosev, Mark David Van Cleve
  • Patent number: 9732376
    Abstract: A sample collection device having a sample tube, funnel, and cap having a capsule and a piercing insert, the capsule having a stabilization solution. After depositing the sample into the tube via the funnel, the cap is screwed onto the tube, piercing the capsule and releasing the stabilization fluid into the tube. The device can be used at home without clinicial supervision for collecting a saliva sample and transporting the sample to an analysis location for DNA analysis.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: August 15, 2017
    Assignee: ANCESTRY.COM DNA, LLC.
    Inventors: Benjamin J. Oyler, Kenneth G. Chahine, Catherine Ann Ball, Federico C. A. Gaeta
  • Patent number: 9724691
    Abstract: Devices, systems, and methods for detecting molecules of interest within a collected sample are described herein. In certain embodiments, self-contained sample analysis systems are disclosed, which include a reusable reader component, a disposable cartridge component, and a disposable sample collection component. The reader component may communicate with a remote computing device for the digital transmission of test protocols and test results. In various disclosed embodiments, the systems, components, and methods are configured to identify the presence, absence, and/or quantity of particular nucleic acids, proteins, or other analytes of interest, for example, in order to test for the presence of one or more pathogens or contaminants in a sample.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: August 8, 2017
    Assignee: CUE INC.
    Inventors: Ayub Khattak, Clinton Sever, Paul Nelson, Ryan Cooper, Thomas Congdon, Justin Demartino, Raphael Shapiro, Mark Duncan
  • Patent number: 9726588
    Abstract: This invention relates to a method of inducing fluid flow in a passive capillarity filled microfluidic device involving the use of a dual flow control reagent system, wherein the first flow control reagent is a surfactant which reduces surface tension of an aqueous fluid sample and the second flow control reagent is a viscosity enhancer.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: August 8, 2017
    Assignee: Molecular Vision Limited
    Inventors: Oliver Hofmann, Simon Rattle, Claire Walshe
  • Patent number: 9726582
    Abstract: A sample port system/device associated with a fluid collection device is provided and is configured to receive fluid-containing devices of varying diameters. A method of improving the work flow and safety involved in acquiring and/or testing fluid samples using such sample port system/device is also provided.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: August 8, 2017
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: James E. Rasmussen
  • Patent number: 9719906
    Abstract: A method for determining a condition in a blood sample includes: providing a sample of blood; providing a metering probe having a pump for aspirating and dispensing; inserting the metering probe a selected distance into the blood sample; measuring the pressure between the sample and pump during sample aspiration or sample dispense; comparing the measured pressure with a reference value; and signaling the presence or absence of the condition. A method for confirming or detecting the presence of a selected layer of blood component in a centrifuged blood sample includes: measuring a pressure of a suspected selected layer in a metering probe during aspiration or dispense; comparing the measured pressure with a reference value, wherein if the measured pressure and the reference value are substantially identical then the selected layer of the blood component is confirmed. In a preferred embodiment the reference value is a pre-selected pressure range.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: August 1, 2017
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: David D. Hyde, Michael W. LaCourt, Tracy McDonald, Christopher M. Parobek
  • Patent number: 9714934
    Abstract: A multi-phase system includes a phase-separated solution comprising at least two phases, each phase having a phase component selected from the group consisting of a polymer, a surfactant and combinations thereof, wherein at least one phase comprises a polymer, wherein the phases, taken together, represent a density gradient. Novel two-phase, three-phase, four-phase, five-phase, or six-phase systems are disclosed. Using the disclosed multi-phase polymer systems, particles, or other analyte of interest can be separated based on their different densities or affinities.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: July 25, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Charles R. Mace, Ozge Akbulut Halatci, Ashok A. Kumar, Nathan D. Shapiro, George M. Whitesides
  • Patent number: 9708494
    Abstract: The present invention relates to a method for fabricating a new silver coating/nanoparticle scaffold that significantly enhances the luminescence of near-field fluorophores via the metal enhanced fluorescence phenomenon. The silver coating/nanoparticle scaffold can be used for numerous applications in metal-enhanced fluorescence.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: July 18, 2017
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE COUNTY
    Inventors: Chris D. Geddes, Anatoliy I. Dragan
  • Patent number: 9687851
    Abstract: There is described a method for heating a sample material in a sample holder, the method comprising receiving the sample holder in a heating chamber of a heating system, the sample holder having at least one sample recipient with the sample material therein; dynamically forming an individual mini microwave cavity around the sample recipient; and applying microwaves generated by at least one microwave generator directly to the sample.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: June 27, 2017
    Assignee: SPC SCIENCE
    Inventors: George Feilders, Arthur Ross, Raymond Guay, Ramin Deban, Jules Gauthier
  • Patent number: 9682376
    Abstract: Systems and methods for analysis of samples, and in certain embodiments, microfluidic sample analyzers configured to receive a cassette containing a sample therein to perform an analysis of the sample are described. The microfluidic sample analyzers may be used to control fluid flow, mixing, and sample analysis in a variety of microfluidic systems such as microfluidic point-of-care diagnostic platforms. Advantageously, the microfluidic sample analyzers may be, in some embodiments, inexpensive, reduced in size compared to conventional bench top systems, and simple to use. Cassettes that can operate with the sample analyzers are also described.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: June 20, 2017
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller, Jason Taylor
  • Patent number: 9678087
    Abstract: Provided are methods for determining the amount of estrone in a sample using mass spectrometry. The methods generally involve ionizing estrone in a sample and detecting and quantifying the amount of the ion to determine the amount of estrone in the sample.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: June 13, 2017
    Assignee: Quest Diagnostics Investments Incorporated
    Inventors: Mildred M. Goldman, Richard E. Reitz
  • Patent number: 9664602
    Abstract: A single use filtering device comprises a filter body formed at least in part of a filter medium configured to hold a sample during filtration and a fastening element configured for releasably mounting the filtering device to a holder. The fastening element being adapted to undergo an irreversible structural alteration during the mounting or removal of the filtering device from the holder to prevent remounting of the filtering device to the holder.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: May 30, 2017
    Assignee: FOSS ANALYTICAL AB
    Inventor: Thomas Palm
  • Patent number: 9664657
    Abstract: A detecting method using an IMS apparatus with a preconcentrator outside its inlet aperture. Analyte vapor is adsorbed during a first phase when substantially no gas is admitted to the reaction region. The preconcentrator is then energized to desorb the analyte molecules and create a volume of desorbed molecules outside the IMS housing. Next, a pressure pulser is energized momentarily to drop pressure in the housing and draw in a small sip of the analyte molecules from the desorbed volume through the aperture. This is repeated until the concentration of analyte molecules in the desorbed volume is too low for accurate analysis, following which the apparatus enters another adsorption phase.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: May 30, 2017
    Assignee: Smiths Detection—Watford Limited
    Inventor: Stephen John Taylor
  • Patent number: 9658168
    Abstract: The invention relates to a method for determining optical properties by measuring intensities on a thin layer, wherein light is irradiated onto a carrier (105) that has said thin layer and that is at least partially transparent. Interferences on the at least one thin layer are measured as the relative intensity of at least one superpositioned wave, optionally using filter arrangements (113, 115, 117) provided for this purpose, whereupon the reflection coefficient(s) and/or the transmission coefficient(s) from the reflection and/or the transmission on the thin layer are determined. Preferably, the intensity of at least two superpositioned waves is measured. The light may be irradiated directly onto the carrier. The invention also relates to a device for determining optical properties by measuring intensities on a thin layer, said device comprising an analysis unit which stores at least one lookup table. The method and the device are preferably used in the area of homeland security.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: May 23, 2017
    Assignee: Biametrics GmbH
    Inventors: Johannes Landgraf, Günther Proll, Florian Pröll
  • Patent number: 9658240
    Abstract: Aspects of the present invention provide a freestanding microfluidic pipette with integrated wells for solution storage. Further aspects of the invention provide a holding interface to provide connectivity with external control components. One aspect of the invention provides a system for applying a microfluidic device in microscopy. The system includes: a microfluidic device having an elongated shape and defining one or more wells for solution storage and processing; and an interface adapted and configured to hold the microfluidic device in a freestanding manner and facilitate simultaneous connection of the one or more wells with a flow controller. Another aspect of the invention provides a method for utilizing a microfluidic device. The method includes: providing a device as described herein; positioning the device adjacent to a microscope; and actuating the interface to operate the microfluidic device.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: May 23, 2017
    Assignee: Fluicell AB
    Inventors: Owe Orwar, Alar Ainla, Aldo Jesorka, Gavin Jeffries
  • Patent number: 9658141
    Abstract: The invention relates to a station for uncovering a receptacle comprising a body in which a plurality of adjacent holes, initially sealed by a cover, are formed. The station comprises at least one cutting member for making at least one cut in the cover between two adjacent holes, so as to form at least one cover portion closing off at least one of the holes of the receptacle, i.e., the selected hole; and at least one heating gripping device which is arranged so as to heat and remove said cover portion, thereby opening the selected hole.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: May 23, 2017
    Assignees: Bio-Rad Innovations, DiaMed GmbH
    Inventors: Sébastien Bernay, Jean-Michel Brisebrat, Frédéric Buffiere
  • Patent number: 9651460
    Abstract: Improved mechanisms for storing and introducing liquid volumes in a liquid handling device and, in particular, improved mechanisms for rupturing a liquid storage package to introduce liquid into the device, improvements to the stability of a liquid receiving chamber inside the device and improvements to liquid handling in the receiving chamber are achieved.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: May 16, 2017
    Assignee: Biosurfit, S.A.
    Inventors: Carlota Albuquerque, Tânia Tenreiro, Nuno Reis, João Garcia Da Fonseca, Ricardo Manuel Marques Caleiro Cabeça
  • Patent number: 9643182
    Abstract: Systems and methods for analysis of samples, and in certain embodiments, microfluidic sample analyzers configured to receive a cassette containing a sample therein to perform an analysis of the sample are described. The microfluidic sample analyzers may be used to control fluid flow, mixing, and sample analysis in a variety of microfluidic systems such as microfluidic point-of-care diagnostic platforms. Advantageously, the microfluidic sample analyzers may be, in some embodiments, inexpensive, reduced in size compared to conventional bench top systems, and simple to use. Cassettes that can operate with the sample analyzers are also described.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: May 9, 2017
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller, Jason Taylor
  • Patent number: 9636672
    Abstract: Disclosed here are pipette tips useful for acquiring or dispelling liquids, and include one or more design that may increase fluid delivery precision and/or accuracy, and may reduce certain repetitive motions.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: May 2, 2017
    Assignee: BIOTIX, INC.
    Inventors: Arta Motadel, Peter Paul Blaszcak, Phillip Chad Hairfield, Sean Michael Callahan
  • Patent number: 9638609
    Abstract: An apparatus for providing a sample gas includes a gas dosing part, a first pressure gauge for measuring a pressure of a sample gas dosed through the gas dosing part, a plurality of flow lines positioned between the gas dosing part and a gas analyzer that can be opened or closed according to the pressure measured by the first pressure gauge, a plurality of control valves respectively formed in the plurality of flow lines and controlling the plurality of flow lines to be opened or closed, a bypass line formed on at least one of the plurality of flow lines and exhausting some of the sample gas flowing along the flow lines, and a controller for selecting one of the plurality of flow lines according to the pressure measured by the first pressure gauge and controlling the control valves formed in the selected flow line.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: May 2, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Cheol Jeong, Kyung-Hwan Jeong, Jong-Soo Kim, Pil-Kwon Jun